综述

液体活检技术推动乳腺癌精准诊疗

  • 舒政 , 1, 2, 3 ,
  • 赵雪娜 1, 2, 3 ,
  • 张梅 , 1, 3
展开
  • 1.山东第一医科大学第一附属医院/山东省千佛山医院普通外科学,山东 济南 250014
  • 2.山东第一医科大学/山东省医学科学院,山东 济南 250117
  • 3.山东第一医科大学第一附属医院腹腔镜技术实验室,山东 济南 250000
张梅,主任医师,研究方向:乳腺癌及甲状腺癌的诊治,E-mail:

舒政,硕士研究生,研究方向:乳腺癌发生发展的机制研究,E-mail:

Copy editor: 洪悦民

收稿日期: 2025-03-04

  网络出版日期: 2025-09-02

基金资助

山东省自然科学基金项目(ZR2021MH325)

山东省老年学与老年医学学会项目(KYLX2025003)

Liquid biopsy technology promotes precision diagnosis and treatment of breast cancer

  • SHU Zheng , 1, 2, 3 ,
  • ZHAO Xuena 1, 2, 3 ,
  • ZHANG Mei , 1, 3
Expand
  • 1. Department of General Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
  • 2. Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
  • 3. Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan 250000, China
ZHANG Mei, E-mail:

Received date: 2025-03-04

  Online published: 2025-09-02

摘要

乳腺癌是女性最常见的恶性肿瘤之一,其发病率逐年攀升。乳腺癌内部复杂的异质性对个体化诊断、治疗和监测提出了更高的要求。近些年,在疾病诊断中,有创侵入性操作逐渐被无创性操作所取代,其中液体活检的问世及发展推动了临床肿瘤学领域的精准诊疗进程。液体活检通过血液或其他体液样本来检测肿瘤标志物,包括但不限于通过循环肿瘤细胞(CTC)、循环肿瘤DNA(ctDNA)和细胞外囊泡(EV)等体液样本。液体活检因其取样的便捷性、监测的连续性以及对个体诊疗的精确性而逐渐被广泛应用于临床。文章就近几年液体活检在乳腺癌中的进展进行介绍,并探讨液体活检相比于传统组织活检的优劣性。

本文引用格式

舒政 , 赵雪娜 , 张梅 . 液体活检技术推动乳腺癌精准诊疗[J]. 新医学, 2025 , 56(7) : 715 -722 . DOI: 10.12464/j.issn.0253-9802.2025-0084

Abstract

Breast cancer is one of the most common malignant tumors in women, and its incidence is increasing year by year. Due to the complex heterogeneity within breast cancer, higher requirements are put forward for individualized diagnosis, treatment and monitoring. In recent years, invasive procedures have been gradually replaced by non-invasive procedures in the diagnosis of diseases, and the advent and development of liquid biopsy has promoted the process of precision diagnosis and treatment in the field of clinical oncology. Liquid biopsy is the detection of tumor markers through blood or other body fluid samples, including but not limited to circulating tumor cells (CTC), circulating tumor DNA (ctDNA) and extracellular vesicles (EV). Liquid biopsy has gradually been widely applied in clinical practice because of its convenience of sampling, continuity of monitoring and accuracy of individual diagnosis and treatment. This article reviews the progress of liquid biopsy in breast cancer in recent years, and discusses the advantages and disadvantages of liquid biopsy compared with traditional tissue biopsy.

截至2024年,乳腺癌已成为全球发病率排名第二的癌症(11.6%),仅次于肺癌(12.4%),作为女性发病率最高的癌症,乳腺癌的早期诊断与治疗显得尤为重要[1]。乳腺癌是一种复杂的异质性疾病,受遗传、分子、细胞、组织特异性、环境、种族和社会经济因素的调节。传统的诊断方法包括影像学及病理学诊断,尽管病理学检查在临床中被视为“金标准”,但仍不能评估肿瘤分子异质性,无法揭示肿瘤克隆多样性及其动态演变规律,亦无法提供精准治疗策略[2]。乳腺癌的常规治疗手段包括外科切除、放射治疗、化学治疗、内分泌治疗、靶向治疗及免疫治疗[3]。尽管乳腺癌诊断与治疗的基本原则已经达成了共识,但随着精准医疗的发展,个体化治疗显得尤为重要,在这种背景下,基于患者体液而非癌灶组织的液体活检为患者带来了福音。液体活检在过去几年中迅速发展,相较以往的技术手段揭示了更多关于肿瘤特征的细节,如肿瘤进展、肿瘤分期、异质性、基因突变和克隆进化等。本文旨在总结液体活检在乳腺癌中的应用进展及对比传统组织活检的优劣。

1 液体活检的定义

液体活检在21世纪初逐渐进入大众视野,是指从各种生物液体(通常是血液)中分析肿瘤特异性生物学标记物(循环肿瘤细胞、循环肿瘤DNA等)进而获取肿瘤信息的一项新技术,不同于传统组织活检检测肿瘤组织中蛋白质的免疫组织化学及细胞形态学[4-5]。肿瘤患者的血液中含有多种肿瘤细胞释放的生物物质,包括循环肿瘤细胞(circulating tumor cell,CTC)、循环肿瘤DNA(circulating tumor DNA,ctDNA)、肿瘤来源的细胞外囊泡(extracellular vesicle,EV)、血小板及外泌体等[6],这些由肿瘤释放并沉积到血液中的物质是特异性的,可以准确区分正常人与肿瘤患者。液体活检最先被用于发病率最高的肺癌,帮助医师早期发现肺癌,且在肿瘤筛查和病情监测方面发挥着重要作用[7-8]。液体活检因其无创性及监测连续性被广泛应用于临床,加速了精准医学的发展[9]

2 液体活检的检测靶点

液体活检的主要靶点有CTC、ctDNA与EV,不同靶点具有不同的特点(表1)。
表1 液体活检靶点的比较

Table 1 Comparison of liquid biopsy targets

靶 点 优势 劣势 应用
CTC ①具有肿瘤来源特异性
②通过DNA、RNA及蛋白质均可获得
③能够进行体外试验
①检测灵敏度较低,漏检率高
②技术挑战大,分离和富集难度高
③临床标准化不足,可重复性较差
①预后分析
②疗效评估
③复发监测
ctDNA ①全面反映肿瘤突变信息
②肿瘤相关突变特异性高,与靶向药物关系明确
①难以确定组织来源
②突变频率通常较低,区分肿瘤变异与背景噪音的技术难度较高
①个性化用药指导
②疗效及耐药监测
③早期辅助诊断
EV ①通过非编码RNA、DNA及蛋白质均可获得
②能够进行体外试验
③适用性广,作为早期筛查标志物的潜力更大
①目前仍缺乏明确的特异性标志物
②肿瘤外泌体的进一步纯化难度高
①早期筛查
②转移调控

2.1 循环肿瘤细胞

CTC是指从原发肿瘤或转移灶脱落,进入外周血液循环系统的完整肿瘤细胞[10],通常在循环中只持续存在1~2.5 h,然后被免疫系统破坏,但仍有一小部分可以存活并播种于远处转移部位[11]。乳腺癌可以通过血液传播转移,癌细胞会随循环系统播散到全身[12]。CTC最初在患者外周血中发现,此后,学者们在异质血细胞群中提取CTC方面取得了巨大进展[13]。CTC的数量非常少,在每100万个白细胞中大约仅有1个[14],其形态多变,随肿瘤分期而变化[15],可黏附在成纤维细胞、血小板等细胞上形成聚集体。相比于未黏附的CTC,黏附的CTC在体内可扩散到更远的地方,后续研究证实其原因是这样的聚集体可以阻止氧化应激和周围的免疫系统对CTC的破坏[16-17]。现有的研究显示,在肺癌、胃癌、结直肠癌等多种实体肿瘤患者的血液中均可检测到CTC[18-20]。超过一半的乳腺癌患者体内能检测到CTC,这为监测乳腺癌提供了极大便利[21]。随着液体活检技术的不断发展,对CTC的检测从单纯的细胞计数发展到单细胞测序,可以通过研究CTC的基因组和转录组进一步了解乳腺癌的发生发展[22]。免疫磁珠阳性富集法的代表性技术CellSearch系统是目前唯一获得美国食品药品监督管理局(Food and Drug Administration,FDA)批准用于临床的CTC检测技术[23]。Bidard等[24]应用该技术对1 944例转移性乳腺癌患者进行研究,发现其中911例患者治疗前CTC数量≥5个/7.5 mL,与CTC数量<5个/7.5 mL的患者相比,这部分高CTC计数患者的总生存期(overall survival,OS)和无进展生存期(progression-free survival,PFS)均明显缩短。

2.2 循环肿瘤DNA

细胞发生凋亡或坏死时会将DNA释放进入血液,称为游离DNA(cell free DNA,cfDNA),血液中的DNA酶可以快速降解cfDNA,因此cfDNA的半衰期很短,约为1~2 h[25]。cf DNA通常是长度为160~180个碱基对的短片段[26]。研究表明癌症患者的cf DNA水平远高于正常人,所以cfDNA最初被用于评估癌症患者的总体肿瘤负担,但最终因总cfDNA水平对于跟踪患者的总体肿瘤负荷和对治疗的反应不够敏感及特异性低等缺点而无法被广泛应用[27]。对于肿瘤细胞而言,其释放到循环中的DNA被称为ctDNA,属于cfDNA的一种[28]。目前对于ctDNA的研究限于碱基对长度以及形态学修饰,其中杂合性缺失(lack of heterozygosity,LOH)、DNA甲基化、DNA完整性是当前研究热点[29-30]。对ctDNA定性、定量与追踪可提供肿瘤遗传变异信息,在全程管理肿瘤患者中的应用价值已在多个临床诊疗指南中被描述[31-32]。目前ctDNA检测技术可以概括为2种:①基于PCR的检测技术,主要包括扩增阻滞突变系统PCR(amplification refractory mutation system PCR,ARMS-PCR)、微滴式数字PCR(droplet digital PCR,ddPCR)和基于小珠(Bead)、乳浊液(Emulsion)、扩增(Amplification)、磁性(Magnetic)的BEAMing技术;②基于高通量测序的检测技术,包括靶向测序、全外显子测序和全基因组测序等。Nik-Zainal等[33]通过对560例乳腺癌患者进行全基因组测序分析,鉴定出93个与乳腺癌发生发展密切相关的蛋白编码癌基因,这些基因共包含1 628个潜在的驱动突变位点。在乳腺癌检测中,ctDNA凭借高灵敏度、全面基因组覆盖、无创动态监测和成熟的临床转化,已成为液体活检动态监测的首选技术,尤其适用于早期复发预警、耐药机制解析和精准治疗指导[34]

2.3 细胞外囊泡

EV是由细胞分泌的一种异质性结构膜群,会穿越细胞膜进入细胞的内环境,存在于血浆、尿液、脑脊液、唾液等多种体液中[35-36]。EV由双层脂质所包裹,直径约30~2 000 nm[35],内含各种生物信息分子,例如蛋白质和核酸等,EV形态和大小是目前判断分泌细胞状态和功能的标准[37]。根据大小EV被分为外泌体(exosomes)、微囊泡(microvesicles)和凋亡体(apoptotic bodies)。外泌体是一种较小的囊泡,直径约50~150 nm,形成于内泛素中,内泛素是一种细胞器,负责内吞和分解细胞内部的物质[38-39];微囊泡是一种较大的囊泡,直径约50~500 nm,是通过细胞膜的脱落形成的,可以通过细胞膜上的突起成熟而分离出来[40];凋亡体是在细胞凋亡过程中形成的较大囊泡,直径大于1 000 nm,当细胞凋亡时会释放凋亡体进入循环[41]。EV被细胞分泌后可随血液抵达身体的不同部位,且因其双层脂质结构而稳定存在于血液中,因此对于乳腺癌的早期监测和诊断均具有重要意义。
EV是极具潜力的“分子信使”,携带乳腺癌特异性核酸、蛋白和脂质,可无创反映肿瘤异质性和微环境交互,其优势在于高稳定性与丰富信息量,但面临分离技术标准化和信号解析复杂性的挑战,是未来早期筛查和动态监测的重要突破口[40-41]

3 液体活检在乳腺癌中的临床应用现状

液体活检已被应用于乳腺癌的早期诊断、复发监测及预后评估,同时对治疗用药也有指导作用[42]

3.1 早期诊断

目前,早期乳腺癌被认为是可以治愈的[43],但由于乳腺癌早期症状不典型,大部分患者进展到晚期才被确诊,不仅失去了完全治愈的机会,治疗方式的选择也受限。大量证据表明液体活检有助于早期诊断乳腺癌,例如ctDNA在乳腺癌临床症状未出现前即可在外周血液中被检测到[44],外周血ctDNA/cfDNA水平的变化可提示癌症初发,目前的检测方法能够检测到低至 1/100 000或 1/100 000拷贝的突变等位基因频率[45]。还有研究表明,乳腺癌患者血浆中检测到的ctDNA可用于无创肿瘤基因检测和量化肿瘤负担,能进一步反映肿瘤异质性和转移特异性,在癌症早期即可明确诊断[46]。此外,EV也凭借其高灵敏度及特异度,为乳腺癌的早期诊断提供了新路径。

3.2 复发监测及预后评估

尽管当前乳腺癌的治疗取得了巨大进展,但其仍然是一种危及生命的疾病,乳腺癌治疗在早期阶段效果较佳,但大一部分患者仍会经历疾病复发[47]。研究显示,ctDNA水平的降低与更长的OS)[48]。在卵巢癌[49]、肺癌[50]和结直肠癌[51]等几种癌症中,ctDNA对疾病进展、治疗反应、预后的意义已被揭示,ctDNA与相对较差的临床结局和肿瘤复发相关。除了评估预后之外,检测乳腺癌患者的ctDNA谱还可以监测治疗后残留病灶与复发风险,从而有助于修改治疗方案并避免过度治疗[52]

3.3 辅助治疗

液体活检对乳腺肿瘤的治疗也有重要辅助作用。ctDNA有助于识别乳腺癌的特定突变进而辅助治疗,Cohen等[53]使用CancerSEEK(一种用于识别包括乳腺癌在内的8种癌症的泛癌血液检测方法)来评估16种ctDNA基因的突变,研究结果显示,检测乳腺癌的灵敏度为33%,特异度为99%[53]。Beaver等[54]评估了乳腺癌患者血浆中的PIK3CA突变情况,PIK3CA是一种高频率突变的致癌基因,30%的乳腺癌体内存在PIK3CA,PIK3CA检测早期乳腺癌的灵敏度为93.3%,特异度为100%[54]。因此Beaver等认为通过检测ctDNA能开发出更具特异性的乳腺癌治疗药物,协助临床医师在肿瘤进展过程中进行个体化治疗。

3.4 在乳腺癌不同亚型中的应用

3.4.1 Luminal型乳腺癌

不同分子分型乳腺癌的生物学行为和治疗策略差异显著,液体活检的应用也各有侧重[55]。Luminal型乳腺癌对内分泌治疗(如他莫昔芬、CDK4/6抑制剂等)的耐药机制复杂(如ESR1突变、PIK3CA突变相关机制),通过ctDNA检测ESR1突变(如Y537S、D538G)可早期发现耐药,进一步动态调整CDK4/6抑制剂联合方案,CTC则更适合评估肿瘤细胞活性、表型转换和转移潜能,联合应用ctDNA和CTC可全面捕捉肿瘤异质性和动态演变过程,为内分泌治疗的精准管理提供双重保障[56]

3.4.2 人类表皮生长因子受体2阳性型乳腺癌

在人类表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)阳性型乳腺癌中,ctDNA有助于预测抗HER2(如曲妥珠单抗、T-DXd)的治疗响应[57],且ctDNA检测中的HER2信号消失与病理完全缓解(pathological complete response,PCR)相关[58]。CTC可被CellSearch或微流控技术分离,从而直接检测HER2蛋白表达(如IHC 3+或FISH+),克服肿瘤异质性带来的影响[59]。换句话说,在HER2阳性型乳腺癌中,ctDNA是基因水平动态监测的金标准,尤其适合靶向治疗耐药突变检测和早期复发预警;而CTC则提供细胞表型与功能信息,直接验证HER2靶点表达并解析异质性。ctDNA与CTC两者相辅相成,从分子到细胞层面实现“双保险”监测。

3.4.3 三阴性乳腺癌

三阴性乳腺癌是恶性程度最高的乳腺癌,通过检测ctDNA中肿瘤突变负荷(tumor mutational burden,TMB)或特定突变(如BRCA1/2)可预测PD-1抑制剂对三阴性乳腺癌的疗效,CTC则可反映存活细胞中PD-L1上调等细胞表型的变化,两者均有助于精准治疗与耐药判断[60]
综上,在不同分子分型乳腺癌中,CTC与ctDNA的动态变化对精准诊疗具有不同的指导意义,在临床中可以根据分子分型选择合适的液体活检检测靶点。

4 液体活检与传统组织活检的比较

传统的组织活检是通过穿刺、内镜或手术切除获取病变组织进行病理检查的“金标准”方法[2]。其主要技术包括细针穿刺(fine-needle aspiration,FNA)、空心针活检(core needle biopsy,CNB)和手术切除活检,通过HE染色、免疫组织化学(如HER2、PD-L1)和分子检测(如EGFR、KRAS)明确诊断,其优势在于可以直接观察组织结构和细胞形态,但具有侵入性且可能遗漏肿瘤异质性等缺点[61]。与传统组织活检相比,液体活检具有创伤小、费时短、保存条件要求不高等优点,同时又可以持续并实时监测患者对治疗药物的不良反应,重要的是有助于揭示肿瘤的时空异质性,这些都是传统组织活检无法实现的[62-63]。但液体活检相比于组织活检来说,其检测的灵敏度不够高,且无法在组织学层面上进行评估,因此目前只能作为传统组织活检的辅助技术[64]。在临床实践中,应将传统组织活检与液体活检联合应用,才能发挥各自的长处。

5 液体活检的局限性

液体活检需要从体液中获取样本,不仅个体间存在差异,与体液中的其他成分相比,CTC、ctDNA、ctRNA的含量相对较少,且会受微环境的影响,分离血浆所需的技术较高,此外,由于来源多样性、亚群复杂性以及易与非囊泡结构结合而缺乏有效的富集技术和分析方法,使得液体活检面临多种挑战[65-66]。一般情况下,对富集的CTC进行分析,可以在蛋白质或mRNA水平上鉴定出特定的肿瘤相关生物学标志物,但一些特殊肿瘤可能会影响检测结果。例如在上皮性肿瘤患者中,上皮性生物学标志物会在上皮向间充质转化(epithelial to mesenchymal transition, EMT)的过程中下调,这可能会导致假阴性结果[67]。此外,进行液体活检时还需要进行初步组织学检查,以避免对诊断结果的过分解读。毫无疑问,液体活检是一种高效的非侵入性诊断方法,可以提供全面的肿瘤分子谱和治疗肿瘤靶点的实时信息,但是需要开发新的技术和标准化的方法来克服阻碍液体活检在转化和临床实践中的限制。

6 结语与展望

近年来,随着分子技术的进步,体液的检测和分析已成为许多研究的主题,不仅为辅助诊断提供了帮助,还有助于乳腺肿瘤的个体化治疗。液体活检作为一种早期诊断技术被应用到临床中,尽管仍存在许多需克服的挑战,但其已为乳腺癌的精确诊疗提供了更多可能。液体活检中的微流控技术对EV的分离具有革命性作用,通过微型化、自动化和高精度操控,显著提升了EV的分离效率、纯度和下游分析可靠性[68]。单细胞测序技术的出现则解决了肿瘤异质性问题,提高稀有靶标检测的灵敏度,还可克服样本量限制的问题[69]
液体活检作为一种无创诊断技术,在乳腺癌精准诊疗中的未来发展前景广阔。首先,在技术层面,多组学联合检测将大幅提高早期肿瘤的检出率,甲基化、片段组学等新标志物的应用有望实现超早期预警[70]。其次,液体活检的临床应用将从辅助诊断向全程管理扩展,动态监测肿瘤演变、预测治疗反应和耐药突变,为精准诊疗提供实时依据[71]。此外,随着检测成本下降和标准化流程建立,液体活检有望成为常规体检项目,实现肿瘤的早筛早诊[72]。尽管仍面临灵敏度提升和生物学标志物待优化等挑战,但液体活检技术的持续突破将为乳腺癌的防治带来新希望,推动肿瘤诊疗进入无创、动态、精准的新时代,在为患者提供个体化治疗和评估预后中都有重要意义。
利益冲突声明:本研究未受到企业、公司等第三方资助,不存在潜在利益冲突。
[1]
FILHO A M, LAVERSANNE M, FERLAY J, et al. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide[J]. Int J Cancer, 2025, 156(7): 1336-1346. DOI: 10.1002/ijc.35278.

[2]
DE FREITAS A J A, CAUSIN R L, VARUZZA M B, et al. Liquid biopsy as a tool for the diagnosis, treatment, and monitoring of breast cancer[J]. Int J Mol Sci, 2022, 23(17): 9952. DOI: 10.3390/ijms23179952.

[3]
关家裕, 林司杭, 周文斌. 液体活检在乳腺癌中的研究进展[J]. 中国医药科学, 2024, 14(23): 52-56. DOI: 10.20116/j.issn2095-0616.2024.23.12.

GUAN J Y, LIN S H, ZHOU W B. Advances in liquid biopsy research in breast cancer[J]. China Med Pharm, 2024, 14(23): 52-56. DOI: 10.20116/j.issn2095-0616.2024.23.12.

[4]
DI ZAZZO E, INTRIERI M, DAVINELLI S. Liquid biopsy and cancer: an ongoing story[J]. J Clin Med, 2023, 12(7): 2690. DOI: 10.3390/jcm12072690.

[5]
ALIX-PANABIÈRES C, MARCHETTI D, LANG J E. Liquid biopsy: from concept to clinical application[J]. Sci Rep, 2023, 13(1): 21685. DOI: 10.1038/s41598-023-48501-x.

[6]
PINZANI P, D’ARGENIO V, DEL RE M, et al. Updates on liquid biopsy: current trends and future perspectives for clinical application in solid tumors[J]. Clin Chem Lab Med, 2021, 59(7): 1181-1200. DOI: 10.1515/cclm-2020-1685.

PMID

[7]
LI W, LIU J B, HOU L K, et al. Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring[J]. Mol Cancer, 2022, 21(1): 25. DOI: 10.1186/s12943-022-01505-z.

PMID

[8]
CASAGRANDE G M S, SILVA M O, REIS R M, et al. Liquid biopsy for lung cancer: up-to-date and perspectives for screening programs[J]. Int J Mol Sci, 2023, 24(3): 2505. DOI: 10.3390/ijms24032505.

[9]
REN F, FEI Q, QIU K, et al. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation[J]. J Exp Clin Cancer Res, 2024, 43(1): 96. DOI: 10.1186/s13046-024-03026-7.

PMID

[10]
DENG Z, WU S, WANG Y, et al. Circulating tumor cell isolation for cancer diagnosis and prognosis[J]. EBioMedicine, 2022, 83: 104237. DOI: 10.1016/j.ebiom.2022.104237.

[11]
NIKANJAM M, KATO S, KURZROCK R. Liquid biopsy: current technology and clinical applications[J]. J Hematol Oncol, 2022, 15(1): 131. DOI: 10.1186/s13045-022-01351-y.

[12]
PARK M, KIM D, KO S, et al. Breast cancer metastasis: mechanisms and therapeutic implications[J]. Int J Mol Sci, 2022, 23(12): 6806. DOI: 10.3390/ijms23126806.

[13]
KO J, BALDASSANO S N, LOH P L, et al. Machine learning to detect signatures of disease in liquid biopsies - a user’s guide[J]. Lab Chip, 2018, 18(3): 395-405. DOI: 10.1039/c7lc00955k.

[14]
TONG B, WANG M. Circulating tumor cells in patients with lung cancer: developments and applications for precision medicine[J]. Future Oncol, 2019, 15(21): 2531-2542. DOI: 10.2217/fon-2018-0548.

PMID

[15]
PARKINSON D R, DRACOPOLI N, PETTY B G, et al. Considerations in the development of circulating tumor cell technology for clinical use[J]. J Transl Med, 2012, 10: 138. DOI: 10.1186/1479-5876-10-138.

PMID

[16]
LABELLE M, BEGUM S, HYNES R O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis[J]. Cancer Cell, 2011, 20(5): 576-590. DOI: 10.1016/j.ccr.2011.09.009.

PMID

[17]
GAL K L, IBRAHIM M X, WIEL C, et al. Antioxidants can increase melanoma metastasis in mice[J]. Sci Transl Med, 2015, 7(308): 308re8. DOI: 10.1126/scitranslmed.aad3740.

[18]
SOUZA V G P, FORDER A, BROCKLEY L J, et al. Liquid biopsy in lung cancer: biomarkers for the management of recurrence and metastasis[J]. Int J Mol Sci, 2023, 24(10): 8894. DOI: 10.3390/ijms24108894.

[19]
KLEIN-SCORY S, LADIGAN-BADURA S, MIKA T, et al. Liquid biopsy based HER2 amplification status in gastric cancer patients indicates clinical response[J]. Heliyon, 2023, 9(11): e21339. DOI: 10.1016/j.heliyon.2023.e21339.

[20]
MONTAGUT C, VIDAL J. Liquid biopsy for precision adjuvant chemotherapy in colon cancer[J]. N Engl J Med, 2022, 386(24): 2330-2331. DOI: 10.1056/NEJMe2204625.

[21]
WOLF J, FRANCO J A, YIP R, et al. Liquid biopsy proteomics in ophthalmology[J]. J Proteome Res, 2024, 23(2): 511-522. DOI: 10.1021/acs.jproteome.3c00756.

PMID

[22]
LIN D, SHEN L, LUO M, et al. Circulating tumor cells: biology and clinical significance[J]. Signal Transduct Target Ther, 2021, 6(1): 404. DOI: 10.1038/s41392-021-00817-8.

[23]
BANKÓ P, LEE S Y, NAGYGYÖRGY V, et al. Technologies for circulating tumor cell separation from whole blood[J]. J Hematol Oncol, 2019, 12(1): 48. DOI: 10.1186/s13045-019-0735-4.

[24]
BIDARD F C, PEETERS D J, FEHM T, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data[J]. Lancet Oncol, 2014, 15(4): 406-414. DOI: 10.1016/S1470-2045(14)70069-5.

[25]
DIEHL F, SCHMIDT K, CHOTI M A, et al. Circulating mutant DNA to assess tumor dynamics[J]. Nat Med, 2008, 14(9): 985-990. DOI: 10.1038/nm.1789.

PMID

[26]
ZHANG J, LI J, SAUCIER J B, et al. Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA[J]. Nat Med, 2019, 25(3): 439-447. DOI: 10.1038/s41591-018-0334-x.

PMID

[27]
LEON S A, SHAPIRO B, SKLAROFF D M, et al. Free DNA in the serum of cancer patients and the effect of therapy[J]. Cancer Res, 1977, 37(3): 646-650.

PMID

[28]
WANG X, WANG L, LIN H, et al. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy[J]. Front Oncol, 2024, 14: 1303335. DOI: 10.3389/fonc.2024.1303335.

[29]
SCHWARZENBACH H, EICHELSER C, KROPIDLOWSKI J, et al. Loss of heterozygosity at tumor suppressor genes detectable on fractionated circulating cell-free tumor DNA as indicator of breast cancer progression[J]. Clin Cancer Res, 2012, 18(20): 5719-5730. DOI: 10.1158/1078-0432.CCR-12-0142.

PMID

[30]
LUO H, WEI W, YE Z, et al. Liquid biopsy of methylation biomarkers in cell-free DNA[J]. Trends Mol Med, 2021, 27(5): 482-500. DOI: 10.1016/j.molmed.2020.12.011.

PMID

[31]
CHIU J, SU F, JOSHI M, et al. Potential value of ctDNA monitoring in metastatic HR +/HER2 - breast cancer: longitudinal ctDNA analysis in the phase Ib MONALEESASIA trial[J]. BMC Med, 2023, 21(1): 306. DOI: 10.1186/s12916-023-03017-z.

[32]
KIM S, KIM S, KIM S H, et al. Clinical validity of oncogenic driver genes detected from circulating tumor DNA in the blood of lung cancer patients[J]. Transl Lung Cancer Res, 2023, 12(6): 1185-1196. DOI: 10.21037/tlcr-22-912.

[33]
NIK-ZAINAL S, DAVIES H, STAAF J, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences[J]. Nature, 2016, 534(7605): 47-54. DOI: 10.1038/nature17676.

[34]
CIESLIK J P, BEHRENS B, BANYS-PALUCHOWSKI M, et al. Liquid biopsy in metastatic breast cancer: path to personalized medicine[J]. Oncol Res Treat, 2025: 1-15. DOI: 10.1159/000545643.

[35]
KALLURI R. The biology and function of exosomes in cancer[J]. J Clin Invest, 2016, 126(4): 1208-1215. DOI: 10.1172/JCI81135.

PMID

[36]
DOBRA G, BUKVA M, SZABO Z, et al. Small extracellular vesicles isolated from serum may serve as signal-enhancers for the monitoring of CNS tumors[J]. Int J Mol Sci, 2020, 21(15): 5359. DOI: 10.3390/ijms21155359.

[37]
YU D, LI Y, WANG M, et al. Exosomes as a new frontier of cancer liquid biopsy[J]. Mol Cancer, 2022, 21(1): 56. DOI: 10.1186/s12943-022-01509-9.

PMID

[38]
KRYLOVA S V, FENG D. The machinery of exosomes: biogenesis, release, and uptake[J]. Int J Mol Sci, 2023, 24(2): 1337. DOI: 10.3390/ijms24021337.

[39]
龚柯, 苏艳琼, 陆昆婕, 等. 表面等离子体共振技术在外泌体表征鉴定中的研究进展[J]. 新医学, 2023, 54(9): 624-628. DOI: 10.3969/j.issn.0253-9802.2023.09.003.

GONG K, SU Y Q, LU K J, et al. Research progress in surface plasmon resonance technology in exosome characterization and identification[J]. J New Med, 2023, 54(9): 624-628. DOI:10.3969/j.issn.0253-9802.2023.09.003.

[40]
CABLE J, WITWER K W, COFFEY R J, et al. Exosomes, microvesicles, and other extracellular vesicles-a Keystone Symposia report[J]. Ann N Y Acad Sci, 2023, 1523(1): 24-37. DOI: 10.1111/nyas.14974.

[41]
CHANG W H, CERIONE R A, ANTONYAK M A. Extracellular vesicles and their roles in cancer progression[J]. Methods Mol Biol, 2021, 2174: 143-170. DOI: 10.1007/978-1-0716-0759-6_10.

[42]
ALBA-BERNAL A, LAVADO-VALENZUELA R, DOMÍNGUEZ-RECIO M E, et al. Challenges and achievements of liquid biopsy technologies employed in early breast cancer[J]. EBioMedicine, 2020, 62: 103100. DOI: 10.1016/j.ebiom.2020.103100.

[43]
HARBECK N, GNANT M. Breast cancer[J]. Lancet, 2017, 389(10074): 1134-1150. DOI: 10.1016/S0140-6736(16)31891-8.

PMID

[44]
KROL I, SCHWAB F D, CARBONE R, et al. Detection of clustered circulating tumour cells in early breast cancer[J]. Br J Cancer, 2021, 125(1): 23-27. DOI: 10.1038/s41416-021-01327-8.

[45]
DAO J, CONWAY P J, SUBRAMANI B, et al. Using cfDNA and ctDNA as oncologic markers: a path to clinical validation[J]. Int J Mol Sci, 2023, 24(17): 13219. DOI: 10.3390/ijms241713219.

[46]
DE MATTOS-ARRUDA L, CALDAS C. Cell-free circulating tumour DNA as a liquid biopsy in breast cancer[J]. Mol Oncol, 2016, 10(3): 464-474. DOI: 10.1016/j.molonc.2015.12.001.

[47]
RAJPUT S, SHARMA P K, MALVIYA R. Biomarkers and treatment strategies for breast cancer recurrence[J]. Curr Drug Targets, 2023, 24(15): 1209-1220. DOI: 10.2174/0113894501258059231103072025.

PMID

[48]
SMERAGE J B, BARLOW W E, HORTOBAGYI G N, et al. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500[J]. J Clin Oncol, 2014, 32(31): 3483-3489. DOI: 10.1200/JCO.2014.56.2561.

PMID

[49]
PARKINSON C A, GALE D, PISKORZ A M, et al. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study[J]. PLoS Med, 2016, 13(12): e1002198. DOI: 10.1371/journal.pmed.1002198.

[50]
CHAUDHURI A A, CHABON J J, LOVEJOY A F, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling[J]. Cancer Discov, 2017, 7(12): 1394-1403. DOI: 10.1158/2159-8290.CD-17-0716.

PMID

[51]
TIE J, KINDE I, WANG Y, et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer[J]. Ann Oncol, 2015, 26(8): 1715-1722. DOI: 10.1093/annonc/mdv177.

PMID

[52]
OLSSON E, WINTER C, GEORGE A, et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease[J]. EMBO Mol Med, 2015, 7(8): 1034-1047. DOI: 10.15252/emmm.201404913.

PMID

[53]
COHEN J D, LI L, WANG Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test[J]. Science, 2018, 359(6378): 926-930. DOI: 10.1126/science.aar3247.

PMID

[54]
BEAVER J A, JELOVAC D, BALUKRISHNA S, et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer[J]. Clin Cancer Res, 2014, 20(10): 2643-2650. DOI: 10.1158/1078-0432.CCR-13-2933.

PMID

[55]
GONZÁLEZ-CONDE M, YAÑEZ-GÓMEZ C, LÓPEZ-LÓPEZ R, et al. Liquid biopsy: a new tool for overcoming CDKi resistance mechanisms in luminal metastatic breast cancer[J]. J Pers Med, 2021, 11(5): 407. DOI: 10.3390/jpm11050407.

[56]
PASTÒ B, VIDA R, DRI A, et al. Beyond Hormone Receptors: liquid biopsy tools to unveil new clinical meanings and empower therapeutic decision-making in Luminal-like metastatic breast cancer[J]. Breast, 2025, 79: 103859. DOI: 10.1016/j.breast.2024.103859.

[57]
GODOY-ORTIZ A, ALBA-BERNAL A, PASCUAL J, et al. Unveiling the potential of liquid biopsy in HER2-positive breast cancer management[J]. Cancers (Basel), 2022, 14(3): 587. DOI: 10.3390/cancers14030587.

[58]
CIRIACO N, ZAMORA E, ESCRIVÁ-DE-ROMANÍ S, et al. Clearance of ctDNA in triple-negative and HER2-positive breast cancer patients during neoadjuvant treatment is correlated with pathologic complete response[J]. Ther Adv Med Oncol, 2022, 14: 17588359221139601. DOI: 10.1177/17588359221139601.

[59]
DEUTSCH T M, RIETHDORF S, FREMD C, et al. HER2-targeted therapy influences CTC status in metastatic breast cancer[J]. Breast Cancer Res Treat, 2020, 182(1): 127-136. DOI: 10.1007/s10549-020-05687-2.

[60]
HOFFMANN O, WORMLAND S, BITTNER A K, et al. Programmed death receptor ligand-2 (PD-L2) bearing extracellular vesicles as a new biomarker to identify early triple-negative breast cancer patients at high risk for relapse[J]. J Cancer Res Clin Oncol, 2023, 149(3): 1159-1174. DOI: 10.1007/s00432-022-03980-9.

[61]
FRANZÉN B, AUER G, LEWENSOHN R. Minimally invasive biopsy-based diagnostics in support of precision cancer medicine[J]. Mol Oncol, 2024, 18(11): 2612-2628. DOI: 10.1002/1878-0261.13640.

[62]
ALIMIRZAIE S, BAGHERZADEH M, AKBARI M R. Liquid biopsy in breast cancer: a comprehensive review[J]. Clin Genet, 2019, 95(6): 643-660. DOI: 10.1111/cge.13514.

PMID

[63]
HIRAHATA T, QURAISH R U, QURAISH A U, et al. Liquid biopsy: a distinctive approach to the diagnosis and prognosis of cancer[J]. Cancer Inform, 2022, 21: 11769351221076062. DOI: 10.1177/11769351221076062.

[64]
HENCH I B, HENCH J, TOLNAY M. Liquid biopsy in clinical management of breast, lung, and colorectal cancer[J]. Front Med (Lausanne), 2018, 5: 9. DOI: 10.3389/fmed.2018.00009.

[65]
BAI Y, ZHAO H. Liquid biopsy in tumors: opportunities and challenges[J]. Ann Transl Med, 2018, 6(Suppl 1): S89. DOI: 10.21037/atm.2018.11.31.

[66]
RAIMONDI L, DE LUCA A, COSTA V, et al. Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment[J]. Oncotarget, 2017, 8(59): 100831-100851. DOI: 10.18632/oncotarget.19852.

[67]
WERNER S, KELLER L, PANTEL K. Epithelial keratins: Biology and implications as diagnostic markers for liquid biopsies[J]. Mol Aspects Med, 2020, 72: 100817. DOI: 10.1016/j.mam.2019.09.001.

[68]
OU X, CHEN P, LIU B F. Liquid biopsy on microfluidics: from existing endogenous to emerging exogenous biomarkers analysis[J]. Anal Chem, 2025, 97(16): 8625-8640. DOI: 10.1021/acs.analchem.4c05407.

[69]
SHEN X, DAI J, GUO L, et al. Single-cell low-pass whole genome sequencing accurately detects circulating tumor cells for liquid biopsy-based multi-cancer diagnosis[J]. NPJ Precis Oncol, 2024, 8(1): 30. DOI: 10.1038/s41698-024-00520-1.

PMID

[70]
PEPE F, BAZAN RUSSO T D, GRISTINA V, et al. Genomics and the early diagnosis of lung cancer[J]. Per Med, 2025: 1-10. DOI: 10.1080/17410541.2025.2494982.

[71]
ZHU S, ZHU Z, NI C, et al. Liquid biopsy instrument for ultra-fast and label-free detection of circulating tumor cells[J]. Research (Wash D C), 2024, 7: 0431. DOI: 10.34133/research.0431.

PMID

[72]
VERONESE N, LUCHINI C, CIRIMINNA S, et al. Potentialities and critical issues of liquid biopsy in clinical practice: an umbrella review[J]. Transl Oncol, 2025, 52: 102172. DOI: 10.1016/j.tranon.2024.102172.

文章导航

/