Original Research

Relationship between red blood cell distribution width and 3-month clinical prognosis in patients with cerebral hemorrhage

  • Wang Pingli ,
  • Wang Yongsheng ,
  • Pan Caiyu
Expand
  • Department of Neurology, Wenzhou City Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000, China
Wang Pingli, E-mail:

Received date: 2018-12-25

  Online published: 2019-05-24

Copyright

Copyright reserved © 2019

Abstract

Objective To investigate the relationship between the red blood cell distribution width (RDW) and the 3-month clinical prognosis in patients with acute cerebral hemorrhage. Methods Clinical data of 158 patients with acute spontaneous cerebral hemorrhage were collected. All patients were followed up at 3 months after onset of cerebral hemorrhage. According to the score of the modified Rankin scale, all patients were divided into the excellent (mRS score≤2) and poor prognosis groups (mRS score = 3-6). The RDW was compared between two groups. The correlation between the mRS score at 3-month follow-up and multiple parameters including gender, age, risk factors of cerebrovascular diseases, blood pressure, blood glucose, Glasgow Coma score, National Institute of Health stroke scale (NIHSS) score, white blood cell count, platelet count, RDW, hematoma location,hemorrhage volume, invasion into the ventricle was analyzed by binary Logistic regression analysis. Results At 3-month follow-up, 88 patients obtained poor clinical prognosis and 70 had excellent clinical prognosis. The RDW in the poor prognosis group was (14.0±0.68)%, significantly higher than (13.0±0.59)% in the excellent prognosis group (P < 0.05). The poor prognosis was correlated with the RDW (OR = 1.221, 95% CI 1.052-1.612, P < 0.05). Age, previous history of diabetes, fasting blood glucose level, GCS score, NIHSS score and bleeding volume were all correlated with short-term prognosis after cerebral hemorrhage (all P < 0.05). Conclusions The increase of RDW in the acute stage of cerebral hemorrhage is correlated with the poor prognosis at 3 months after the onset of cerebral hemorrhage. RDW might predict the clinical prognosis at 3 months after cerebral hemorrhage.

Cite this article

Wang Pingli , Wang Yongsheng , Pan Caiyu . Relationship between red blood cell distribution width and 3-month clinical prognosis in patients with cerebral hemorrhage[J]. JOURNAL OF NEW MEDICINE, 2019 , 50(5) : 380 -383 . DOI: 10.3969/j.issn.0253-9802.2019.05.013

脑出血的致残率和病死率极高,3个月时的病死率达到20% ~ 30%[1],只有31%的患者在脑出血后3个月时能够恢复生活自理[1,2]。红细胞分布宽度(RDW)是血液中红细胞大小变化的标志,目前很多研究者认为RDW与炎症状态有关,而脑出血后的疾病过程属炎症过程,RDW可能与脑出血后预后相关[3,4,5]。在本研究中,笔者通过分析RDW与脑出血后3个月时的改良Rankin量表(mRS)评分的关系,进一步探讨脑出血急性期RDW是否能够预测脑出血的短期预后。

对象与方法

一、研究对象

选择2016年1月至2018年4月在我科连续住院的急性自发性脑出血患者作研究。纳入标准:①符合中国脑出血诊治指南对脑出血的诊断标准,经头部CT确诊为脑出血;②发病至首次行CT检查时间≤24 h;③年龄≥18岁;④出血部位位于基底节区及大脑各叶,出血量< 50 ml;⑤患者和(或)家属同意进入本项研究,并在知情同意书上签字。排除标准:①其他原因所致的继发性脑出血;②华法林相关性脑出血;③有蛛网膜下隙、脑干或小脑出血;④未配合完成3个月的随访,资料不完整。

二、研究方法

参考中国卒中登记研究中对脑出血患者预后的可能影响因素收集患者资料[6]。包括:①一般情况,如性别、年龄、既往史(高血压病、糖尿病、脑血管病史)、家族史;②入院时情况,入院时急诊测得的血糖水平,入院第1次记录的收缩压/舒张压,入院时神经功能[GCS评分、美国国立卫生研究院卒中量表(NIHSS)评分];③入院后急诊血常规相关指标(白细胞计数、血小板计数及RDW等);④首次头颅CT提示的血肿部位、血肿量,是否破入脑室;⑤随访信息,在脑出血后3个月时对患者进行电话随访,获得mRS评分信息,并询问卒中是否复发、死亡等信息。本研究经本院伦理委员会批准。

三、评价标准

采用多田公式法测量脑出血体积,即出血体积(ml)=血肿最长径(cm)×宽(cm)×层厚(cm)/2[7]
预后指标:发病3个月时随访,预后不良为mRS评分3 ~ 6分,预后良好为mRS评分0 ~ 2分。

四、统计学处理

采用SAS 9.4处理数据。计量资料先进行正态性检验,符合正态分布的资料采用$\bar{x}$±s描述,2组间比较采用独立样本t检验;非正态分布的资料采用中位数(上、下四分位数)表示,预后良好及预后不良者组间比较采用秩和检验。计数资料用例(%)表示,组间比较采用$\chi$2检验。多因素分析采用二分类Logistic回归(逐步法)。以P < 0.05为差异有统计学意义。

结 果

一、急性脑出血患者一般情况

共收集急性脑出血患者158例,其中男103例、女55例,年龄(60.4±12)岁,病程10(5 ~ 24) d,入院时GCS评分3 ~ 15分。

二、影响脑出血预后的因素

发病3个月后对患者进行电话随访,预后良好的患者(mRS评分0 ~ 2分)共70例,预后不良的患者(mRS评分3 ~ 5分)共88例,2组的性别、既往高血压病病史、脑血管病病史、糖尿病病史、入院时舒张压差异均无统计学意义(P均> 0.05);但预后不良的患者年龄更高、GCS评分更低、NIHSS评分更高、入院时收缩压更高,血糖、白细胞计数、血小板计数、RDW更高,初次头颅CT计算出的出血量更大,破入脑室的例数更多(P均< 0.05),见表1
表1 预后不良与预后良好急性脑出血患者一般情况比较
项 目 总体 预后不良(88例) 预后良好(70例) t/$\chi$2/Z值 P值
年龄(岁) 60.4±12.0 63.7±12.8 55.7±13.6 3.796 < 0.001
男(例) 103 56 47 0.211 0.646
既往史(例)
高血压病 110 59 51 0.623 0.430
脑血管病 20 12 8 0.172 0.678
糖尿病 24 15 9 0.531 0.466
入院情况
GCS评分 12(3,15) 13(3,15) 9(5,15) 8.496 < 0.001
NIHSS评分 7(2,22) 16(5,22) 5(2,18) 16.527 < 0.001
收缩压(mm Hg) 168±24 173±25 163±28 2.368 0.019
舒张压(mm Hg) 96±20 96±26 95±24 0.248 0.804
血糖(mmol/L) 8.3±2.5 8.8±2.2 7.3±2.7 3.848 < 0.001
白细胞计数(×109/L) 10.3±4.8 13.0±5.0 9.3+3.2 5.475 < 0.001
血小板计数(×109/L) 198.0±62.5 210.0±66.1 177.0±59.4 3.259 0.001
RDW(%) 13.5±0.7 14.0±0.7 13.0±0.6 9.730 < 0.001
脑出血体积(mm3 22(12,37) 28(18,40) 15(7,30) 4.011 < 0.001
破入脑室(例) 56 41 15 10.788 0.001

注:1 mm Hg=0.133 kPa

三、RDW与脑出血预后的关系

发病3个月随访,预后良好患者发病时RDW为(13.0±0.59)%,预后不良组为(14.0±0.68)%(t = 9.730,P < 0.001)。通过逐步法进行二分类Logistic回归分析发现,年龄、既往糖尿病病史,入院后空腹血糖水平、GCS评分、NIHSS评分、RDW及出血体积均与脑出血后短期预后相关(P均< 0.05),见表2。通过分析预后良好与预后不良的患者数据,提示患者的预后不良与RDW呈正相关(OR = 1.221,P < 0.05)。
表2 影响脑出血预后多因素分析结果
项 目 B Wald OR值 95% CI P值
年龄 0.034 11.813 1.035 1.012 ~ 1.064 < 0.001
糖尿病病史 1.237 13.815 3.446 2.014 ~ 5.520 < 0.001
空腹血糖 0.258 7.832 1.295 1.151 ~ 1.501 0.001
GCS评分 -0.794 9.239 0.452 0.340 ~ 0.591 < 0.001
NIHSS评分 0.316 8.523 1.371 1.161 ~ 1.591 < 0.001
RDW 0.200 4.936 1.221 1.052 ~ 1.612 0.030
脑出血体积 0.351 7.798 1.420 1.142 ~ 1.806 0.001

讨 论

脑出血发病率高,占我国所有脑卒中的18.8% ~ 47.6%[1]。因其致残率和病死率高,脑出血预后也一直是研究的热点,构建多种预测模型来预测脑出血的预后情况,寻找特异度和敏感度好的标志物可以为脑出血后的神经损伤程度及预后提供理论依据。本研究结果提示年龄、既往糖尿病病史、空腹血糖水平和神经功能评分与预后相关,与以往研究结果相似[8,9,10]
RDW是临床血常规检测内容之一,反映了外周血红细胞体积异质性。既往研究已证实RDW是反映机体炎症水平的标志物之一,本研究结果显示RDW与预后不良呈正相关,提示RDW值升高则预后不良风险增加,与其他研究结果基本相似[11,12]。Altintas等[13]的研究显示脑出血急性期的RDW可能与脑出血急性期血肿扩大有关;一项关于RDW与卒中患者预后关系的队列研究结果也表明,卒中人群的基线RDW水平明显高于非卒中人群,RDW水平是心血管原因导致的死亡(HR为2.38,95%CI 1.41 ~ 4.01)及全因死亡(HR为2.0,95%CI 1.25 ~ 3.20)的独立预测因素[14]
目前对RDW与急性脑出血预后相关的具体机制仍未明确,大部分研究者认为可能与脑出血后的炎症反应相关[15]。脑出血后,血肿对周围组织直接的机械压迫、化学反应和氧化损伤等引起的级联炎症反应是血肿周围神经元继发死亡的原因[12]。实验模型和临床研究均证实血肿自身成分引起早期的炎症反应,加重了脑内组织的损伤,影响患者预后[4,5]
脑出血诱导损伤的疾病过程中的炎症机制可以在外周生物标志物上显示出来。RDW是与炎症反应和凝血反应密切相关的指标,急性脑出血存在潜在的炎症反应和促凝血反应,炎症反应时,炎性细胞因子TNF-α、IL-1β和IL-6抑制促红细胞生成素诱导的红细胞成熟,导致未成熟的红细胞进入循环,临床表现为RDW增高[17]。炎症反应和促凝血反应愈激烈,预后更差。
最近的研究表明RDW升高可能与近期的出血相关[18]。对非ST段抬高ACS的患者进行的研究显示,RDW是患者住院期间发现大出血的独立预测因子[19]。有研究者发现PCI术前的RDW是大出血的重要预测因子(OR值1.12,95% CI 1.06 ~ 1.19)[20]
笔者选择分析RDW与脑出血预后的关系,是因为检测RDW简单且成本低,临床获取方便。本研究结果提示RDW或可作为脑出血预后的预测因子,故值得在临床上推广。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

[1]
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑出血诊治指南(2014). 中华神经科杂志, 2015,48(6):435-444.

[2]
An SJ, Kim TJ, Yoon BW . Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke, 2017,19(1):3-10.

DOI

[3]
Inuzuka R, Abe J . Red blood cell distribution width as a link between ineffective erythropoiesis and chronic inflammation in heart failure. Circ J, 2015,79(5):974-975.

DOI

[4]
Mracsko E, Veltkamp R . Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci, 2014,8:388.

[5]
Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW . Infl-ammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol, 2014,115(2):25-44.

DOI

[6]
Ji R Shen H, Pan Y, Wang P, Liu G, Wang Y, Li H, Zhao X, Wang Y; China National Stroke Registry (CNSR) investigators. A novel risk score to predict 1-year functional outcome after intracerebral hemorrhage and comparison with existing scores. Crit Care, 2013,17(6):R275.

DOI PMID

[7]
Khan M, Baird GL, Elias R, Rodriguez-Srednicki J, Yaghi S, Yan S, Collins S, Thompson BB, Wendell LC, Potter NS, Fehnel C, Saad A, Silver B . Comparison of intracerebral hemorrhage volume calculation methods and their impact on scoring tools. J Neuroimaging, 2017,27(1):144-148.

DOI

[8]
Boulanger M, Poon MT, Wild SH , Al-Shahi Salman R. Association between diabetes mellitus and the occurrence and outcome of intracerebral hemorrhage. Neurology, 2016,87(9):870-878.

DOI

[9]
Boulanger M , Al-Shahi Salman R, Kerssens J, Wild SH; Scottish Diabetes Research Network Epidemiology Group. Association between diabetes mellitus and incidence of intrace- rebral haemorrhage and case fatality rates: a retrospective popu-lation-based cohort study. Diabetes Obes Metab, 2017,19(8):1193-1197.

DOI

[10]
陈劲飞, 肖化选, 钟素雯, 姚润伟 . 持续颅内压监测联合 NIHSS 量表在高血压脑出血患者的应用. 新医学, 2016,47(6):393-396.

[11]
黄钰财, 李劈正, 彭文 . RDW预测急性脑出血患者30天死亡风险的研究. 中国急救复苏与灾害医学杂志, 2017,12(12):1142-1144.

[12]
莫钧, 文秀玲, 毛矛帅, 李金燕, 罗杨, 段如宽, 李悦 . 红细胞分布宽度与急性脑出血患者预后的关系. 安徽医药, 2014,18(2):287-289.

DOI

[13]
Altintas O, Duruyen H, Baran G, Baran O, Katar S, Antar V, Asil T . The relationship of hematoma growth to red blood cell distribution width in patients with hypertensive intracerebral hemorrhage. Turk Neurosurg, 2017,27(3):368-373.

[14]
Ani C, Ovbiagele B . Elevated red blood cell distribution width predicts mortality in persons with known stroke. J Neurol Sci, 2009,277(1-2):103-108.

DOI

[15]
李枝, 丰宏林 . 红细胞分布宽度与脑卒中关系的研究现状. 神经疾病与精神卫生, 2018,18(4):289-291.

[16]
Askenase MH, Sansing LH . Stages of the inflammatory response in pathology and tissue repair after intracerebral hemorrhage. Semin Neurol, 2016,36(3):288-297.

DOI PMID

[17]
Kalyani P, Jamil K . A study on biochemical facet of anemia in cancers: a strong link between erythropoietin and tumor necrosis factor alpha in anemic cancer patients. Indian J Cancer, 2015,52(1):127-132.

DOI

[18]
Paulus EM, Weinberg JA, Magnotti LJ, Sharpe JP, Schroeppel TJ, Fabian TC, Croce MA . Admission red cell distribution width: a novel predictor of massive transfusion after injury. Am Surg, 2014,80(7):685-689.

PMID

[19]
Sánchez-Martínez M, López-Cuenca A, Marín F, Flores-Blanco PJ , García Narbon A, de las Heras-Gómez I, Sánchez-Galian MJ, Valdés-Chávarri M, Januzzi JL, Manzano-Fernández S. Red cell distribution width and additive risk prediction for major bleeding in non-ST-segment elevation acute coronary syndrome. Rev Esp Cardiol (Engl Ed), 2014,67(10):830-836.

DOI

[20]
Yao HM, Sun TW, Zhang XJ, Shen DL, Du YY, Wan YD, Zhang JY, Li L, Zhao LS . Red blood cell distribution width and long-term outcome in patients undergoing percutaneous coronary intervention in the drug-eluting stenting era: a two-year cohort study. PLoS One, 2014,9(4):e94887.

DOI PMID

Outlines

/