Special Topic on Sleep Medicine Original Research

Clinical application of the systemic inflammatory response index in risk prediction of obstructive sleep apnea combined with coronary heart disease

  • QIU Xuan ,
  • GULIMIRE Aimaiti ,
  • CHEN Yulan ,
  • YAO Yanli ,
  • WANG Xingchen ,
  • AYIGUZAILI Maimaitimin
Expand
  • Department of Hypertension, Cardiovascular Disease Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
CHEN Yulan, E-mail:

Received date: 2024-09-27

  Online published: 2025-04-01

Abstract

Objective To explore the risk factors for coronary artery disease (CAD) in patients with obstructive sleep apnea (OSA) and to establish a clinical risk prediction model based on the systemic inflammatory response index (SIRI) and to validat its effectiveness. Methods OSA patients suspected of CAD who underwent coronary angiography or coronary CT angiography at the First Affiliated Hospital of Xinjiang Medical University between April 2020 and December 2023 were enrolled. Patients were divided into CAD and non-CAD groups based on the degree of coronary artery stenosis. Variable were screened using LASSO regression and multifactor logistic regression, and a nomogram was constructed. The discrimination and calibration of the prediction model were evaluated and validated using receiver operating characteristic (ROC) curves, calibration curves, and Hosmer-Lemeshow test. The clinical effectiveness of the prediction model was assessed using decision curve analysis (DCA). Results Multivariate logistic regression results indicated the following factors for CAD in OSA patients (all P < 0.05): age≥50 years(OR=1.947 (95% CI 1.277-2.969)), hypertension (OR=2.462 (95% CI 1.612-3.761)), diabetes (OR=2.003 (95% CI 1.313-3.057)), low-density lipoprotein cholesterol (LDL-C) ≥2.6 mmol/L (OR=1.793 (95% CI 1.176-2.735)), apnea-hypopnea index (AHI) ≥30 times/hour (OR=2.425 (95% CI 1.500-3.920)), and SIRI ≥0.84 (OR=2.240 (95% CI 1.463-3.428)). A nomogram was constructed based on these factors. The area under the ROC curve (AUC) for the prediction model was 0.721 (95% CI 0.673-0.770) in the training set and 0.750 (95% CI 0.678-0.820) in the validation set. Calibration curves and the Hosmer-Lemeshow test indicated good agreement between predicted and actual outcomes (training set: χ 2 = 7.924, P = 0.542; validation set: χ 2 = 12.304, P = 0.197). DCA demonstrated the clinical utility of the prediction model. Conclusion A risk prediction model incorporating age, hypertension, diabetes, LDL-C, AHI, and SIRI has potential clinical value for predicting CAD in OSA patients.

Cite this article

QIU Xuan , GULIMIRE Aimaiti , CHEN Yulan , YAO Yanli , WANG Xingchen , AYIGUZAILI Maimaitimin . Clinical application of the systemic inflammatory response index in risk prediction of obstructive sleep apnea combined with coronary heart disease[J]. JOURNAL OF NEW MEDICINE, 2025 , 56(2) : 197 -205 . DOI: 10.12464/j.issn.0253-9802.2024-0396

阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)是一种严重的睡眠障碍,其特征为睡眠过程中上气道反复发生部分或完全阻塞,导致睡眠过程中反复出现呼吸暂停[1]。根据全球流行病学研究显示,30~69岁成人中约有9.36亿人受到OSA的影响,且其发病率逐年上升[2]。OSA不仅显著降低患者的生活质量,还被证实增加了心血管疾病特别是冠状动脉粥样硬化性心脏病(冠心病)的发生风险[3]
OSA是冠心病的独立危险因素,OSA患者中冠心病的患病率约为20%~30%[4]。同时,冠心病患者中合并OSA的比例相对更高,达38%~65%[5]。OSA引发冠心病的机制主要与多种因素有关,其中炎症反应在这一过程中起着至关重要的作用[6]。睡眠期间反复的低氧和觉醒使得交感神经活动增强,从而导致全身性炎症反应,这又进一步加重心血管系统的损伤,最终增加了冠心病的发生风险。全身炎症反应指数(systemic inflammatory response index,SIRI)作为一种新型炎症生物标志物,已被证实与冠心病和冠状动脉病变的严重程度有关[7]。近年临床研究显示,在OSA与冠心病相互作用的探索中,SIRI成为新的视角[8]。因此,本研究基于SIRI,构建临床预测模型,预测OSA患者并发冠心病的风险,以指导临床筛查高危人群,从而达到早期诊断、有效防控及改善预后的目的。

1 对象与方法

1.1 研究对象

收集2020年4月至2023年12月新疆医科大学第一附属医院收治的疑似冠心病且完善冠状动脉造影或冠状动脉CT血管显像检查的OSA患者1 214例。严格按照纳排标准筛选后最终纳入713例。按照7∶3的比例随机分为训练集(500例,用于构建OSA合并冠心病的临床预测模型)和验证集(213例,用于评估已构建模型的性能)。
诊断标准:①OSA诊断标准依据《成人阻塞性睡眠呼吸暂停多学科诊疗指南》[9];②冠心病诊断标准依据《稳定性冠心病诊断与治疗指南》[10]
纳入标准:①符合OSA诊断标准;②疑诊冠心病,且有冠状动脉造影或冠状动脉CT血管显像检查结果;③年龄在18~80岁的患者。
排除标准:①中枢性及混合性睡眠呼吸暂停者;②支气管哮喘、慢性阻塞性肺疾病、肺源性心脏病、肺动脉高压等不稳定的肺部疾病患者;③先天性心脏病、严重心力衰竭(心功能Ⅲ、Ⅳ级)患者;④甲状腺功能亢进患者;⑤急慢性炎症、严重肝肾功能不全、血液系统疾病及慢性消耗性疾病和恶性肿瘤患者;⑥使用连续气道正压通气治疗的OSA患者;⑦无法配合完成睡眠监测的患者。
本研究已通过新疆医科大学第一附属医院伦理委员会批准(批件号:20200318-109),入组患者均已经签署知情同意书。

1.2 方法

1.2.1 基线临床资料

收集入组患者性别、年龄、高血压史、糖尿病史、吸烟史、饮酒史、身高、体质量,计算体质量指数(body mass index,BMI)。采集患者空腹血液样本,血生化使用罗氏C8000生化分析仪测定,检测指标包括血清肌酐、血清尿酸、空腹血糖(fasting blood glucose,FBG)、甘油三酯、总胆固醇、高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-C)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)、天冬氨酸氨基转移酶(aspartate aminotransferase,AST)、丙氨酸氨基转移酶(alanine aminotransferase,ALT)。完善血常规检查,收集的数据包括中性粒细胞计数、淋巴细胞计数、单核细胞计数,计算单核细胞计数与淋巴细胞计数比值(ratio of monocyte and lymphocyte,MLR)、SIRI(中性粒细胞计数与单核细胞计数的乘积除以淋巴细胞计数)。使用美国伟伦ABPM 6100型动态血压监测仪进行24 h动态血压监测,记录24 h收缩压、24 h舒张压。

1.2.2 多导睡眠呼吸监测

采用澳大利亚Compumedics多导睡眠呼吸监测系统进行7 h整夜多导睡眠呼吸监测,同步监测患者的血氧饱和度、脉搏、呼吸频率、鼾声、口鼻气流等,监测前进行注意事项宣教。监测结束后使用Remlogic软件进行数据分析,由受过专业培训的医师解读睡眠报告,并由高级职称医师审核。收集的监测指标包括呼吸暂停低通气指数(apnea hypopnea index,AHI)、平均血氧饱和度(mean blood oxygen saturation, MSaO2)、最低血氧饱和度(lowest blood oxygen saturation,LSaO2)。

1.2.3 冠状动脉造影

冠状动脉造影由心血管专科手术医师进行,术前对患者进行常规心电图、血压、血氧指标监测,采用美国GE Innova 2100型数字减影血管造影机,应用Seldinger穿刺技术,经桡动脉或股动脉将特定心脏导管送入左、右冠状动脉开口,注入造影剂,行选择性左、右冠状动脉血管造影,采用标准Judkins法选择多功能造影,进行多体位、多角度投照,由2名以上心血管专科医师对冠状动脉造影结果进行分析。

1.2.4 冠状动脉CT血管显像

采用德国西门子SOMATOM Definition Flash 双源CT进行图像采集。指导患者取平卧位,扫描范围自气管隆突下1 cm至心脏膈面水平。增强扫描使用两时相注射技术,第一时相以3.5~5.0 mL/s的流速于患者肘正中静脉注入非离子型造影剂60~80 mL,第二时相以相同流速注入生理盐水30 mL。参数设置为电压120 kV、电流380~410 mA。将数据导入工作站并计算相应容积数据等,获得冠状动脉三维图像并观察狭窄病灶。由2名工作经验丰富的影像科医师分别独立完成诊断。

1.3 统计学方法

采用SPSS 25.0、R 4.3.2分析数据,计数资料以n(%)表示,组间比较用χ 2检验;符合正态分布的计量资料以$\bar{x}±s$表示,组间比较用t检验,不符合正态分布的计量资料用M(P25,P75)表示,组间比较用秩和检验。变量间相关性采用Spearman秩相关分析。选用最小绝对收缩和选择算子(least absolute shrinkage and seletion operator,LASSO)回归对相关影响因素进行筛选,再用非条件二分类Logistic回归分析影响因素;用Hosmer-Lemeshow检验模型拟合优度;绘制受试者操作特征(receiver operating characteristic,ROC)曲线;通过“rms”包构建列线图;用“rmda”包绘制校准曲线和决策曲线,进行决策曲线分析(decision curve analysis,DCA)。双侧P < 0.05为差异有统计学意义。

2 结 果

2.1 训练集和验证集的OSA患者基线资料对比

训练集OSA并发冠心病者145例(29.00%),验证集OSA并发冠心病者66例(30.99%)。2组患者基线资料均衡可比,差异无统计学意义(均P >0.05)。见表1
表1 训练集与验证集的OSA患者基线资料对比

Table 1 Comparison of baseline data of patients with OSA between training set and validation set

变 量 总体(n=713) 训练集(n=500) 验证集(n=213) t/ χ 2/Z P
男性/n(%) 610(85.55) 435(87.00) 175(82.16) 2.832 0.092
年龄/岁 48.84±9.82 48.96±9.94 48.55±9.58 1.551 0.121
BMI/(kg/m2 27.44(24.62,30.25) 27.39(24.56,30.34) 27.68(25.15,30.15) -1.341 0.237
高血压/n(%) 297(41.65) 203(40.60) 94(44.13) 0.766 0.381
糖尿病/n(%) 269(37.73) 199(39.80) 70(32.86) 3.059 0.080
吸烟史/n(%) 364(51.05) 259(51.80) 105(49.30) 0.375 0.540
饮酒史/n(%) 336(47.12) 240(48.00) 96(45.07) 0.514 0.473
ALT/(U/L) 26.51(17.89,41.60) 26.29(17.67,42.13) 26.75(18.81,40.52) -0.633 0.527
AST/(U/L) 21.30(17.75,28.40) 21.35(17.30,29.00) 21.30(17.95,27.90) -0.068 0.946
血清肌酐/(μmol/L) 75.38±16.50 74.81±16.51 76.58±15.66 -1.326 0.185
血尿酸/(μmol/L) 376.43±90.31 377.43±93.28 376.54±83.90 0.120 0.904
总胆固醇/(mmol/L) 4.59(4.04,5.23) 4.56(4.04,5.18) 4.65(4.02,5.31) -0.588 0.557
甘油三酯/(mmol/L) 1.90(1.33,2.81) 1.92(1.35,2.84) 1.81(1.25,2.73) -1.025 0.305
HDL-C/(mmol/L) 1.07(0.89,1.30) 1.05(0.89,1.28) 1.11(0.89,1.32) -1.298 0.194
LDL-C/(mmol/L) 2.54(1.98,3.13) 2.53(1.98,3.09) 2.55(1.99,3.22) -0.275 0.784
FBG/(mmol/L) 5.20(4.62,5.80) 5.21(4.60,5.80) 5.14(4.73,5.79) -0.144 0.885
24 h收缩压/mmHg 132(123,142) 132(123,143) 133(122,141) -0.096 0.924
24 h舒张压/mmHg 86(78,93) 86(78,93) 87(78,93) -0.415 0.678
MSaO2/% 92.40(91.40,93.30) 92.30(91.30,93.40) 92.40(91.50,93.30) -0.514 0.623
LSaO2/% 81.00(76.00,85.00) 81.00(76.00,85.00) 82.00(77.00,85.00) -0.847 0.379
AHI/(次/小时) 18.90(9.20,25.00) 18.80(9.10,25.30) 18.90(9.30,24.60) -0.162 0.835
MLR 0.23(0.19,0.28) 0.23(0.18,0.28) 0.23(0.18,0.29) -0.500 0.617
SIRI 0.84(0.60,1.15) 0.82(0.59,1.12) 0.88(0.62,1.19) -1.230 0.219

注:1 mmHg=0.133 kPa。

2.2 训练集中非冠心病患者和冠心病患者的基线资料对比

训练集中,非冠心病患者和冠心病患者的年龄、BMI、高血压、糖尿病、LDL-C、AHI、LSaO2、MLR、SIRI比较差异有统计学意义(均P <0.05)。组间性别、吸烟史、饮酒史、ALT、AST、血清肌酐、血清尿酸、FBG、总胆固醇、甘油三酯、HDL-C、24 h收缩压、24 h舒张压、MSaO2比较差异均无统计学意义(均P > 0.05)。见表2
表2 训练集中是否合并冠心病的OSA患者组间基线资料对比

Table 2 Comparison of the baseline data between the OSA patients with or without coronary heart disease in the training set

变 量 非冠心病患者(n=355) 冠心病患者(n=145) t/ χ 2/Z P
男性/n(%) 307(86.84) 128(88.28) 0.294 0.588
年龄/岁 47.56±9.22 52.02±10.8 -4.220 <0.001
BMI/(kg/m2 27.20(24.46,29.75) 27.72(24.98,30.87) -2.128 0.035
高血压/n(%) 124(34.93) 79(54.88) 16.321 <0.001
糖尿病/n(%) 127(35.77) 72(49.66) 8.279 0.004
吸烟史/n(%) 182(51.52) 77(51.30) 0.139 0.709
饮酒史/n(%) 174(49.01) 66(45.52) 0.504 0.478
ALT/(U/L) 26.60(18.00,41.68) 26.00(17.08,42.75) -0.737 0.461
AST/(U/L) 21.22(17.30,28.61) 22.05(17.10,30.46) -0.013 0.989
血清肌酐/(μmol/L) 74.67±16.75 75.17±15.96 -0.308 0.758
血清尿酸/(μmol/L) 376.19±94.35 380.46±90.86 -0.465 0.642
总胆固醇/(mmol/L) 4.54(4.02,5.12) 4.68(4.14,5.28) -1.925 0.054
甘油三酯/(mmol/L) 1.93(1.41,2.83) 1.92(1.32,2.86) -0.479 0.632
HDL-C/(mmol/L) 1.04(0.88,1.28) 1.07(0.90,1.28) -0.409 0.683
LDL-C/(mmol/L) 2.48(1.93,3.04) 2.63(2.13,3.32) -2.456 0.014
FBG/(mmol/L) 5.20(4.56,5.75) 5.28(4.69,6.09) -1.746 0.081
24 h收缩压/mmHg 132(124,141) 132(120,146) -0.056 0.956
24 h舒张压/mmHg 86(78,93) 86(77,94) -0.672 0.502
MSaO2/% 92.40(91.50,93.50) 92.30(91.10,93.00) -1.835 0.068
LSaO2/% 82.00(77.00,85.00) 80.00(73.00,85.00) -2.156 0.031
AHI/(次/小时) 18.60(8.50,23.20) 21.57(10.48,28.63) -3.753 <0.001
MLR 0.22(0.18,0.27) 0.25(0.19,0.32) -3.561 <0.001
SIRI 0.79(0.55,1.03) 1.00(0.64,1.36) -4.308 <0.001

2.3 SIRI与OSA合并冠心病的各种相关因素的相关性分析

Spearman秩相关分析显示,SIRI与年龄(rs =0.101,P = 0.007)、BMI(rs = 0.076,P = 0.044)、AHI(rs = 0.117,P = 0.002)、24 h 收缩压(rs = 0.102,P = 0.006)、24 h 舒张压(rs = 0.084,P = 0.024)、FBG(rs = 0.107,P = 0.004)呈正相关,与MaSO2rs = -0.138,P < 0.001)呈负相关。见图1
图1 SIRI与OSA合并冠心病的各种相关因素的和弦图

Figure1 A chord plot of various factors associated with SIRI and OSA with CHD

2.4 LASSO回归筛选OSA合并冠心病的预测因子

LASSO回归对变量进行降维处理,采用10倍交叉验证法选出模型最优值。当λ取1倍标准误(λ1se),即λ1se = 0.042时,此时得到最优模型,共筛选出6个非零系数预测变量(P < 0.05),即高血压、糖尿病、年龄 ≥ 50岁、AHI ≥ 30次/小时、LDL-C ≥ 2.6 mmol/L和SIRI ≥ 0.84×109/L。见图2
图2 LASSO回归筛选预测因子

注:A为研究变量的LASSO系数曲线;B为10次交叉验证法获取最合适λ的过程。

Figure 2 LASSO regression screening for predictors

2.5 OSA患者合并冠心病风险影响因素的多因素Logistic回归分析

以冠心病为因变量,LASSO回归筛选出因素为自变量,进行多因素Logistic回归分析,结果显示年龄 ≥ 50岁、高血压、糖尿病、LDL-C ≥2.6 mmol /L、AHI ≥ 30次/小时、SIRI≥0.84为OSA
合并冠心病的危险因素(均P < 0.05)。见表3
表3 OSA患者合并冠心病风险影响因素的多因素Logistic回归分析

Table 3 Multivariate Logistic regression analysis of risk factors for OSA combined with CHD

变 量 β SE χ 2 P OR值 OR的95%CI
下限 上限
年龄≥50岁 0.665 0.215 9.589 0.002 1.947 1.277 2.969
高血压 0.901 0.216 17.381 <0.001 2.462 1.612 3.761
糖尿病 0.695 0.207 10.382 0.001 2.003 1.313 3.057
LDL-C ≥ 2.6 mmol/L 0.584 0.215 7.351 0.007 1.793 1.176 2.735
AHI ≥ 30次/小时 0.886 0.245 13.071 <0.001 2.425 1.500 3.920
SIRI ≥ 0.84×109/L 0.806 0.217 13.788 <0.001 2.240 1.463 3.428

2.6 OSA患者合并冠心病风险的列线图

根据多因素Logistic回归分析结果,以筛选出的变量为预测因子,构建OSA患者合并冠心病的列线图预测模型。见图3
图3 OSA患者并发冠心病风险预测列线图

Figure 3 Nomogram of risk prediction models for OSA combined with CHD

2.7 临床预测模型的验证和评价

通过绘制ROC曲线和计算曲线下面积(area under curve,AUC)评估模型的区分度。训练集AUC为0.721(95%CI 0.673~0.770),灵敏度为62.6%,特异度为73.1%;验证集为0.750(95%CI 0.678~0.820),灵敏度为65.3%,特异度为84.6%,说明模型预测能力良好(图4)。分别对训练集和验证集绘制校准曲线(图5),进行Hosmer-Lemeshow检验、Brier得分,评价模型校准能力。结果显示,预测模型在训练集和验证集均具有较好的校准度(训练集 χ 2 =7.924,P = 0.542,Brier得分为0.185;验证集 χ 2 =12.304,P = 0.197,Brier得分为0.173)。DCA显示,当预测阈值在训练集为0.18~0.76,在验证集为0.20~0.60时,列线图评估的临床净收益率均大于“不干预”和“全干预”方案,证实该列线图具有较好的临床适用性(图6)。
图4 训练集与验证集的ROC曲线

注:A为训练集,B为验证集。

Figure 4 The ROC curves for the training set and the validation set

图5 训练集与验证集的校准曲线

注:A为训练集,B为验证集。

Figure 5 Calibration curves for the training set and the validation set

图6 训练集与验证组验证集的决策曲线

注:A为训练集,B为验证集。

Figure 6 Decision curves for the training set and the validation set

2.8 SIRI与OSAHS合并冠心病的传统危险因素间预测价值比较

通过计算AUC比较SIRI与OSA合并冠心病的传统危险因素的预测价值,结果显示SIRI联合传统危险因素后,其对OSA合并冠心病的预测价值提升(P = 0.024)。见表4
表4 SIRI与OSAHS合并冠心病的传统危险因素间的预测价值比较

Table 4 Comparison of predictive value between traditional risk factors and SIRI of OSAHS with CHD

危险因素 灵敏度/% 特异度/% AUC AUC的95%CI
下限 上限
年龄+高血压+糖尿病+LDL-C+AHI 63.4 56.1 0.677 0.626 0.727
年龄+高血压+糖尿病+LDL-C+AHI+SIRI 69.7 61.7 0.719 0.671 0.766

3 讨论

OSA的病因复杂多样,其发生与多种因素相关,包括肥胖、上气道解剖异常和遗传因素等。这些因素的相互作用可能导致冠心病的发生,并且在早期阶段往往不易被发现。OSA与冠心病之间的联系不仅表现在共病现象上,更涉及复杂的调控网络,其中炎症反应扮演了重要角色。临床和实验研究均表明,OSA可以促使全身的炎症状态,这种炎症状态不仅影响心血管系统的功能,也可能加速冠心病的发展[11-12]
SIRI作为一种新型炎症标志物,近年来引起了广泛关注。SIRI是通过中性粒细胞计数、单核细胞计数、淋巴细胞计数组合计算得出,反映了机体的整体炎症状态[13]。现有研究显示,SIRI与传统的炎症指标(如C反应蛋白、白细胞计数等)有关,而其优越性在于更全面地整合炎症反应的多个方面,提供更可靠的炎症评估。这一新兴指标不仅在心血管疾病的风险评估中显示出良好的前景,在OSA患者的风险分层及其相关并发症的预测分析中,同样展现极大的应用潜力[14-15]。因此,将SIRI应用于OSA合并冠心病的研究,可能为此领域提供新的方向,有助于推动未来临床管理的改进。
本研究结果显示,年龄 ≥ 50岁、高血压、糖尿病、LDL-C ≥ 2.6 mmol/L、AHI ≥ 30次/小时、SIRI ≥ 0.84×109/L是OSA患者合并冠心病的危险因素,据此建立预测模型。模型经过内部验证,结果显示,建模组和验证组的AUC值均大于0.70,两组的校准曲线一致性良好,决策曲线表明有净获益,这证实了该模型具有良好的区分度、预测稳定性和临床应用价值。
OSA反复的呼吸暂停和低氧血症,导致心脏供氧不足,诱发夜间心绞痛,加速冠心病的发生与发展。本研究显示,年龄≥50岁、高血压、糖尿病、LDL-C ≥ 2.6 mmol/L、AHI ≥ 30次/小时是OSA合并冠心病的危险因素。Framingham系列研究[16]已经证实年龄、高血压、糖尿病、LDL-C是冠心病的传统危险因素,并且这些因素也增加了OSA的患病风险[17],本研究结果与之一致。AHI≥30次/小时是OSA并发冠心病的危险因素,即重度OSA患者患冠心病风险是轻中度OSA患者的2.425倍,这与Pei等[18]及Tamura等[19]的研究结果相符。重度OSA患者夜间反复的间歇性缺氧和复氧导致氧化应激显著增加,产生大量活性氧,从而引起细胞与组织的功能异常。这种氧化应激不仅激活了炎症级联反应,还促使炎症介质释放及免疫细胞浸润,导致全身性和局部炎症反应加剧[20]。另一方面,OSA患者的交感神经系统活动显著增强,夜间发生缺氧时,这种交感神经的过度兴奋可导致心率和血压升高,进一步加重心脏负担。此外,缺氧引发的内皮损伤导致内皮功能障碍,使一氧化氮合成减少,从而削弱血管扩张能力并促进血栓形成。随着这些病理变化的积累,患者的代谢调节失控,脂质代谢发生紊乱,进而促使血小板聚集。这些因素的综合作用加速了动脉粥样硬化的进程[21],显著增加了冠心病的风险。
SIRI通过多参数的整合有效反映全身系统性炎症状态,2016年由Qi等[13]首次提出。SIRI在心血管疾病的评估和预后中显示出其独特的价值,相比传统的炎症标志物,SIRI不仅具有更好的灵敏度和特异度,而且在一定程度上能够克服单一指标所带来的局限性。本研究显示,与SIRI<0.84×109/L的OSA患者相比,SIRI≥0.84×109/L的患者发生冠心病的风险是其2.240倍,提示SIRI增加OSA并发冠心病风险。这与Jin等[22]研究结果相似,此项研究纳入了来自开滦队列的85 154例受试者,并对动脉粥样硬化性心血管事件(包括心肌梗死、卒中)和全因死亡进行了10年随访,结果显示SIRI升高会增加卒中、卒中亚型和全因死亡的风险,且在年龄< 60岁的受试者中SIRI与心肌梗死发生呈正相关。SIRI通过融合3种细胞的功能而展现出其独特优势,这3种细胞在动脉粥样硬化的病理过程中相互影响,这种影响对于疾病的发生及进展具有至关重要的意义。中性粒细胞在动脉粥样硬化的炎症反应中扮演着关键角色,通过分泌大量炎症介质、趋化因子和自由基,诱导内皮细胞损伤,导致组织缺血[23]。单核细胞的活化及其转化为富含脂质的巨噬细胞,是动脉粥样硬化病变形成的基础过程[24]。此外,淋巴细胞在炎症中发挥调节功能,可能对动脉粥样硬化有抑制作用[25]。SIRI所评估的细胞成分之间的比例,能够反映出机体的炎症状态及其在动脉粥样硬化发展过程中的作用。
本研究构建了基于年龄、高血压、糖尿病、LDL-C、AHI、SIRI 6个独立危险因素的OSA合并冠心病的临床预测模型,该模型整合了既有的危险因素和新的炎症生物标志物,目的是提供一种能够进行个性化风险评估的工具,帮助医疗专业人员识别高风险患者,并制定更有效的预防和治疗计划。
然而,本研究也存在一定的局限性:①本研究是一项单中心回顾性研究,这可能导致选择偏倚,从而影响结果的普遍适用性;②病例来源单一,尽管已进行内部验证,但由于数据仅来自一家医院,因此未来需扩大样本量并进行多中心验证,以更全面地评估模型的临床预测效用。

利益冲突声明:本研究未受到企业、公司等第三方资助,不存在潜在利益冲突。

[1]
VEASEY S C, ROSEN I M. Obstructive sleep apnea in adults[J]. N Engl J Med, 2019, 380(15): 1442-1449. DOI: 10.1056/nejmcp1816152.

[2]
BENJAFIELD A V, AYAS N T, EASTWOOD P R, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[J]. Lancet Respir Med, 2019, 7(8): 687-698. DOI: 10.1016/S2213-2600(19)30198-5.

[3]
SUN H, DU Z, YU H, et al. Excessive daytime sleepiness is associated with increased residual cardiovascular risks among coronary artery disease patients with obstructive sleep apnea[J]. Sleep Med, 2024, 115: 131-136. DOI: 10.1016/j.sleep.2024.02.004.

[4]
SCHULZ R, GREBE M, EISELE H J, et al. Obstructive sleep apnea-related cardiovascular disease[J]. Med Klin (Munich), 2006, 101(4): 321-327. DOI:10.1007/s00063-006-1041-9.

[5]
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. DOI: 10.3969/j.issn.1000-3614.2021.06.001.

The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases burden in China: an updated summary of 2020[J]. Chin Circ J, 2021, 36(6): 521-545. DOI: 10.3969/j.issn.1000-3614.2021.06.001.

[6]
SANDERSON J E, FANG F, WEI Y. Obstructive sleep apnoea and inflammation in age-dependent cardiovascular disease[J]. Eur Heart J, 2020, 41(26): 2503. DOI: 10.1093/eurheartj/ehaa332.

[7]
DZIEDZIC E A, GĄSIOR J S, TUZIMEK A, et al. Investigation of the associations of novel inflammatory biomarkers-systemic inflammatory index (SII) and systemic inflammatory response index (SIRI)-with the severity of coronary artery disease and acute coronary syndrome occurrence[J]. Int J Mol Sci, 2022, 23(17): 9553. DOI: 10.3390/ijms23179553.

[8]
PAU M C, ZINELLU A, MANGONI A A, et al. Evaluation of inflammation and oxidative stress markers in patients with obstructive sleep apnea (OSA)[J]. J Clin Med, 2023, 12(12): 3935. DOI:10.3390/jcm12123935.

[9]
中国医师协会睡眠医学专业委员会. 成人阻塞性睡眠呼吸暂停多学科诊疗指南[J]. 中华医学杂志, 2018, 98(24): 1902-1914. DOI: 10.3760/cma.j.issn.0376-2491.2018.24.003.

Chinese Academy Society of Sleep Medicine of Chinese Medical Doctor Association. Multidisciplinary diagnosis and treatment guidelines for adult obstructive sleep apnea[J]. Natl Med J China, 2018, 98(24): 1902-1914. DOI: 10.3760/cma.j.issn.0376-2491.2018.24.003.

[10]
中华医学会心血管病学分会介入心脏病学组, 中华医学会心血管病学分会动脉粥样硬化与冠心病学组, 中国医师协会心血管内科医师分会血栓防治专业委员会, 等. 稳定性冠心病诊断与治疗指南[J]. 中华心血管病杂志, 2018, 46(9):680-694. DOI:10.3760/cma.j.issn.0253-3758.2018.09.004.

Section of Interventional Cardiology of Chinese Society of Cardiology, Section of Atherosclerosis and Coronary Artery Disease of Chinese Society of Cardiology, Specialty Committee on Prevention and Treatment of Thrombosis of Chinese College of Cardiovascular Physicians. Guideline on the diagnosis and treatment of stable coronary artery disease. Chin J Cardiol, 2018, 46(9): 680-694. DOI: 10.3760/cma.j.issn.0253-3758.2018.09.004.

[11]
ZDRAVKOVIC M, POPADIC V, KLASNJA S, et al. Obstructive sleep apnea and cardiovascular risk: the role of dyslipidemia, inflammation, and obesity[J]. Front Pharmacol, 2022, 13: 898072. DOI:10.3389/fphar.2022.898072.

[12]
REGEV D, ETZION S, HADDAD H, et al. Obstructive sleep apnea syndrome in vitro model: controlled intermittent hypoxia stimulation of human stem cells-derived cardiomyocytes[J]. Int J Mol Sci, 2022, 23(18): 10272. DOI: 10.3390/ijms.231810272.

[13]
QI Q, ZHUANG L, SHEN Y, et al. A novel systemic inflammation response index (SIRI) for predicting the survival of patients with pancreatic cancer after chemotherapy[J]. Cancer, 2016, 122(14): 2158-2167. DOI:10.1002/cncr.30057.

[14]
HAN K, SHI D, YANG L, et al. Prognostic value of systemic inflammatory response index in patients with acute coronary syndrome undergoing percutaneous coronary intervention[J]. Ann Med, 2022, 54(1): 1667-1677. DOI: 10.1080/07853890.2022.2083671.

[15]
LI Q, MA X, SHAO Q, et al. Prognostic impact of multiple lymphocyte-based inflammatory indices in acute coronary syndrome patients[J]. Front Cardiovasc Med, 2022, 9: 811790. DOI: 10.3389/fcvm.2022.811790.

[16]
O’DONNELL C J, ELOSUA R. Cardiovascular risk factors. insights from Framingham Heart Study[J]. Rev Española De Cardiol Engl Ed, 2008, 61(3): 299-310. DOI: 10.1016/S1885-5857(08)60118-8.

[17]
KLAR YAGGI H, STROHL K P. Adult obstructive sleep apnea/hypopnea syndrome: definitions, risk factors, and pathogenesis[J]. Clin Chest Med, 2010, 31(2): 179-186. DOI: 10.1016/j.ccm.2010.02.011.

[18]
PEI G, OU Q, CHEN Y, et al. Screening for obstructive sleep apnea before coronary angiography[J]. Clin Respir J, 2023, 17(1): 13-19. DOI: 10.1111/crj.13556.

[19]
TAMURA A, KAWANO Y, ANDO S, et al. Association between coronary spastic angina pectoris and obstructive sleep apnea[J]. J Cardiol, 2010, 56(2): 240-244. DOI: 10.1016/j.jjcc.2010.06.003.

[20]
MELIANTE P G, ZOCCALI F, CASCONE F, et al. Molecular pathology, oxidative stress, and biomarkers in obstructive sleep apnea[J]. Int J Mol Sci, 2023, 24(6): 5478. DOI: 10.3390/ijms24065478.

[21]
BALTZIS D, BAKKER J P, PATEL S R, et al. Obstructive sleep apnea and vascular diseases[J]. Compr Physiol, 2016, 6(3): 1519-1528. DOI: 10.1002/cphy.c150029.

[22]
JIN Z, WU Q, CHEN S, et al. The associations of two novel inflammation indexes, SII and SIRI with the risks for cardiovascular diseases and all-cause mortality: a ten-year follow-up study in 85, 154 individuals[J]. J Inflamm Res, 2021, 14: 131-140. DOI: 10.2147/JIR.S283835.

[23]
SHAH A D, DENAXAS S, NICHOLAS O, et al. Neutrophil counts and initial presentation of 12 cardiovascular diseases: a CALIBER cohort study[J]. J Am Coll Cardiol, 2017, 69(9): 1160-1169. DOI: 10.1016/j.jacc.2016.12.022.

[24]
KIM J H, LEE Y J, PARK B. Higher monocyte count with normal white blood cell count is positively associated with 10-year cardiovascular disease risk determined by Framingham risk score among community-dwelling Korean individuals[J]. Medicine (Baltimore), 2019, 98(17): e15340. DOI: 10.1097/md.0000000000015340.

[25]
AZAB B, ZAHER M, WEISERBS K F, et al. Usefulness of neutrophil to lymphocyte ratio in predicting short- and long-term mortality after non-ST-elevation myocardial infarction[J]. Am J Cardiol, 2010, 106(4): 470-476. DOI: 10.1016/j.amjcard.2010.03.062.

Outlines

/