Special Topic on the Assessment and Treatment of Dysphagia: Specialist Forum

Application and prospects of neuromodulation techniques in the treatment of dysphagia

  • LI Chao ,
  • WU Haiwan ,
  • QIAO Jia ,
  • YE Qiuping ,
  • XIE Chunqing ,
  • CHEN Jiemei ,
  • DAI Meng ,
  • DOU Zulin , * ,
  • WEN Hongmei , *
Expand
  • Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
DOU Zulin, E-mail:
WEN Hongmei, E-mail:

Received date: 2025-07-22

  Online published: 2025-09-02

Abstract

Dysphagia not only severely affects patients’ quality of life but also significantly increases the incidence of complications and mortality risk. In recent years, neuromodulation technologies have provided breakthrough therapeutic strategies for swallowing rehabilitation by targeting peripheral and central neural circuits. This article systematically reviews the key technologies and recent advances in this field: for peripheral stimulation, it highlights pharyngeal electrical stimulation and vagus nerve stimulation; for central modulation, it focuses on the applications of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. These neuromodulation techniques exert their therapeutic effects through multiple mechanisms, including regulating neural plasticity and improving neuromuscular coordination. Future development should focus on the integration of multimodal technologies and optimization of personalized treatment strategies to promote the establishment of a precise rehabilitation system for dysphagia.

Cite this article

LI Chao , WU Haiwan , QIAO Jia , YE Qiuping , XIE Chunqing , CHEN Jiemei , DAI Meng , DOU Zulin , WEN Hongmei . Application and prospects of neuromodulation techniques in the treatment of dysphagia[J]. JOURNAL OF NEW MEDICINE, 2025 , 56(8) : 723 -730 . DOI: 10.12464/j.issn.0253-9802.2025-3000

导语:随着人口老龄化进程加快及社会环境的不断变化,神经系统疾病及其相关功能障碍的发病率逐年上升,已成为威胁人类健康、影响患者生活质量的重要公共卫生问题。其中,吞咽障碍作为神经系统疾病常见的并发症,不仅显著增加患者的病死率,还给患者及其家庭带来沉重的身心负担。在此背景下,加强相关领域的深入研究、提升疾病的诊疗水平显得尤为重要。本期“吞咽障碍的评估与治疗”专题精心遴选并汇编了该领域的优秀学术论文,旨在与广大医学工作者共享前沿科研成果与实践经验,激发创新思维,推动精准诊疗进步,助力我国吞咽障碍康复医学的高质量发展。
——专刊召集人
吞咽是一个高度复杂的生理过程,需要口腔、咽部及食管等多个结构提供精确的感觉输入,中枢神经系统整合处理信息,并由头颈部相关肌群实现有序协作输出[1-2]。具体来说,感觉信息首先通过三叉神经(Ⅴ)、面神经(Ⅶ)、舌咽神经(Ⅸ)及迷走神经(Ⅹ)等颅神经传递至大脑[3],随后在延髓内的感觉运动处理中心完成初步整合。延髓作为吞咽的中枢模式发生器,其活动还受到大脑皮层、小脑等高级中枢神经区域的调节[3-4]。最终,口轮匝肌、舌肌和咽缩肌等头颈部肌肉在精确激活下,协同完成食物或液体从口腔安全转运至胃部的全过程。一旦这一复杂的感觉-运动通路因各种疾病被破坏,便可能导致吞咽障碍的发生。
近年来,随着人口老龄化进程加快及相关基础疾病发病率的提升,吞咽障碍的发病率呈逐年上升趋势。最新循证医学证据表明,急性脑卒中患者中约有42%出现吞咽障碍[5],总体患病率高达38.57%[6]。在神经退行性疾病领域,吞咽障碍同样常见:多发性硬化和帕金森病患者的患病率分别为44.8%和60%以上[7-8]。与此同时,头颈部肿瘤等患者的吞咽障碍发生率也达41%~58%[9]。这些数据显示,吞咽障碍在多种疾病背景下普遍存在,并对患者健康构成严重威胁,因此,探索其有效的治疗手段已成为当前临床和科研领域的关注重点。
吞咽障碍传统治疗方法主要包括3类:首先是代偿性策略,如调整食物质地(增稠液体或制成泥状等),便于更安全地吞咽,尽管应用普遍但相关循证证据有限[10]。其次为行为干预措施,在临床医师指导下完成特定行为训练,虽已被证实有效[11-12],但操作复杂、耗时不同且疾病类型需求各异。第3种则依赖不同类型的喂养管道[13],如鼻胃管、经皮胃造口管等。鉴于传统治疗手段存在一定局限,近年来多种神经调控技术逐步兴起,通过对外周神经或中枢神经系统进行特定刺激,可诱发神经可塑性,以重建吞咽的生物力学功能。本文将对该领域的神经调控技术进行介绍。

1 外周神经调控的相关技术

1.1 咽腔电刺激

咽腔电刺激(pharyngeal electrical stimulation,PES)通过导管电极将特定频率和强度的电流传递至咽部黏膜,激活感觉传入神经,调节中枢吞咽网络的可塑性,从而改善吞咽障碍[14-15]。Hamdy等[16]发现,PES可在健康人群中诱导吞咽运动皮层可塑性,表现为咽部运动代表区扩大、皮层兴奋性增强。Fraser等[17]进一步证实,PES可促进急性脑卒中患者吞咽运动皮层可塑性恢复,表现为未受损半球皮质延髓束兴奋性增强,且与吞咽功能的即时改善呈正相关。多项随机对照研究表明,PES具有降低吞咽障碍患者误吸发生率、改善进食状态和缩短住院时间的作用[18-20];此外,PES能够促进脑卒中合并严重吞咽障碍患者的外周感觉恢复,改善气道保护功能并有利于气管切开患者拔管[21-22]。一项病例报告显示,PES可安全、有效地逆转新型冠状病毒感染患者拔除气管插管后出现的严重神经源性吞咽障碍[23]。鉴于上述,PES已被英国国家卫生与保健优化研究所(National Institute for Health and Clinical Excellence,NICE)推荐用于神经源性气管切开患者的吞咽障碍治疗,显示出其在临床应用中的潜力[24]。然而,亦有随机对照研究结果显示,PES治疗亚急性脑卒中吞咽障碍患者的疗效与假刺激组并无显著差异,这可能与刺激强度设置不足等因素有关,此外轻度吞咽障碍患者的自然恢复,以及治疗手段的差异也可能影响治疗效果[25]
为进一步提升PES的治疗效果,笔者团队对其参数进行了优化,通过调整波形(三角波与方波结合)及延长脉冲宽度(10 ms),改良了刺激模式,旨在增强感觉传入、减少肌肉疲劳,并将其命名为改良咽腔电刺激(modified pharyngeal electrical stimulation,mPES),而且以个案形式报道了mPES应用于慢性重度神经源性吞咽障碍患者的治疗,结果显示mPES可显著促进吞咽功能的改善,且疗效可持续数周[26]。随后开展的单臂前瞻性研究证实经过连续2周的mPES干预后,患者的功能性经口摄食量表(Functional Oral Intake Scale,FOIS)和喉镜吞咽评估(Flexible Endoscopic Evaluation of Swallowing,FEES)的渗漏-误吸评分均显著改善,且未发现严重不良反应[27]。通过功能近红外光谱(functional near-infrared spectroscopy,fNIRS)对脑皮层的神经活动进行观察,发现mPES可激活与吞咽相关的多个脑区,包括初级感觉皮层、初级运动皮层和感觉联合皮层等,提示mPES可通过诱导神经网络的可塑性变化,优化脑功能连接,改善吞咽功能[28]
在实验研究方面,建立大鼠缺血性脑卒中后吞咽障碍模型,优化mPES刺激参数的研究发现,1 mA强度、5 Hz频率(每次10 min,连续3 d)为最佳刺激方案,缺血后72 h开始干预疗效最佳,可改善大鼠吞咽功能,包括缩短咽部通过时间、减少吞咽间隔和增加吞咽食团面积。此参数下,感觉运动皮层中N-甲基-D-天冬氨酸受体1(N-methyl-D-aspartate receptor 1,NMDAR1)和钙调素依赖性蛋白激酶Ⅱα亚型(Ca2+/calmodulin-dependent protein kinase Ⅱα,CaMKⅡα)表达显著上调,提示该刺激模式最有利于增强皮层兴奋性和功能恢复[29-30],为mPES临床干预提供了实验依据。

1.2 迷走神经刺激

迷走神经刺激(vagus nerve stimulation,VNS)是一种通过电刺激调节迷走神经活动的治疗方法。该技术最初应用于抑郁症和癫痫等神经系统疾病,近年研究者发现其对脑卒中后功能障碍具有显著治疗潜力。根据刺激方式的不同,VNS主要分为植入性迷走神经刺激(implant vagus nerve stimulation,iVNS)和经皮迷走神经刺激(transcutaneous vagus nerve stimulation,tVNS),其中tVNS因无创性更受临床青睐,在规范操作下具有较高的安全性,其非侵入性特点降低了传统VNS的并发症风险。tVNS包括经耳迷走神经刺激(transcutaneous auricular vagal nerve stimulation,taVNS)和经颈迷走神经刺激(transcutaneous cervical vagal nerve stimulation,tcVNS),taVNS电极置于耳甲腔,刺激迷走神经纤维耳支,tcVNS则通过经皮电极直接刺激颈部迷走神经干[31]
在临床研究中,Wang等[32]采用tVNS治疗30例急性期脑卒中后吞咽障碍患者(参数:脉冲宽度0.5 ms、频率25 Hz,刺激强度根据患者耐受性在0~5 mA范围内调节、每次30 min),治疗3周后,患者的渗漏-误吸评分明显改善,提示tVNS是急性脑卒中后治疗吞咽障碍的一种有效、无创的治疗方式。Marrosu等[33]对3例多发性硬化合并吞咽障碍患者进行VNS治疗后,患者的吞咽功能得到改善。在基础研究中,Long等[34]采用tVNS治疗大脑中动脉闭塞后吞咽障碍大鼠模型(参数:频率20 Hz、强度2 mA,脉冲宽度0.5 ms,30 min/次),治疗3周后,结果提示该干预方式可增加大鼠的髓鞘再生、诱导血管生成、抑制脑白质的炎症反应,从而改善吞咽障碍。
此外,tVNS还可能通过缓解吞咽肌肉肌张力异常、改善吞咽协调性、促进吞咽感觉功能的恢复等发挥临床疗效[35-37],其潜在作用机制包括整合神经传导通路、抗炎与神经保护、增强神经可塑性和重组、调节血脑屏障通透性、直接调节咽肌功能等[38-40],然而,tVNS在吞咽障碍中的作用机制尚未完全明了。tVNS的疗效与刺激参数密切相关,其参数优化需综合考虑电流、频率、脉宽、刺激周期、持续时间、介入时机等多因素,同时结合患者生理特征及动态反馈实现个体化治疗[41]
近年来,呼吸门控迷走神经电刺激(respiratory-gated auricular vagal afferent nerve stimulation,RAVANS)作为一种比较新的tVNS刺激方式,也逐渐在吞咽障碍领域得到应用。这项技术能够实现呼吸同步化的迷走神经精准调控。其核心机制在于:首先,通过实时监测呼吸周期,在特定的吸气或呼气时相精确触发迷走神经刺激;其次,基于呼吸波形变化的动态分析,智能算法能自动优化刺激参数;最后,系统能够即时获取生理反馈数据,并据此调整下一轮刺激方案,从而构建完整的“监测-反馈-刺激”闭环系统。这种模式实现了刺激时相的精准同步,通过持续的自适应优化确保了治疗的安全性和有效性。研究显示,RAVANS可能通过呼吸控制调节单胺能和γ-氨基丁酸(gama-aminobutyric acid,GABA)系统来增强孤束核和蓝斑的激活,达到调控吞咽的目的[42]。然而,其在吞咽障碍领域的确切疗效及作用机制还需要更多研究进一步阐明。

2 中枢神经调控的相关技术

2.1 经颅磁刺激

重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)根据法拉第电磁感应原理,利用交流电通过线圈产生磁场,时变磁场再产生感应电流作用于大脑皮层,神经细胞发生去极化,产生运动诱发电位,从而调节神经细胞兴奋性[43]。已有大量文献证实高频 rTMS(≥ 5 Hz)会增加吞咽皮层兴奋性,低频 rTMS(≤ 1 Hz)则会产生抑制作用[44]
多项荟萃分析显示rTMS对吞咽功能有积极作用。最新发表的一篇综述中纳入了19项系统综述和meta分析,结果显示所有研究均报告rTMS刺激大脑半球至少具有中等程度的整体疗效[45],该综述也强调了研究之间的差异,特别是在刺激部位、频率和刺激模式等因素方面。然而,也有研究表明从刺激部位来看,刺激不同半球时吞咽功能的改善程度均无统计学差异[46-47],此外,最新证据提示,与单纯刺激患侧或健侧半球相比,双侧半球联合刺激可能带来更显著的吞咽功能获益[48-49]。针对低频与高频rTMS的疗效,现有研究结果存在分歧,有研究者认为两者疗效无显著差异,也有研究者分别支持低频或高频rTMS更具优势[50-51]
小脑rTMS的应用潜力近年来已成为研究的热点。一项纳入了5个随机对照试验、包含673例吞咽障碍患者的meta分析表明,小脑rTMS对吞咽功能具有显著改善效果,且在刺激部位(单侧与双侧小脑)、刺激模式[rTMS与间歇性θ波爆发刺激(intermittent theta burst stimulation,iTBS)]以及刺激频率(5 Hz与10 Hz)方面均未发现显著差异[52]。然而,双侧小脑rTMS在治疗后的大脑兴奋程度方面,比单侧小脑rTMS显著增强[53]。针对大脑皮层的rTMS治疗存在诱发癫痫发作的风险,小脑rTMS虽在理论上也有可能引发治疗后癫痫发作,但目前文献中尚未有相关病例报告,推测小脑rTMS较大脑皮层rTMS具有更高的安全性[14]
iTBS是一种在相对较短刺激时间内可产生等效或更强神经调控效果的磁刺激方法,相较于传统rTMS具有更高的刺激效率。Rao等[54]通过对70例脑卒中后吞咽困难患者实施10次双侧小脑iTBS,随访4周后发现其吞咽功能评分明显提升。另一项研究将90例脑卒中患者分为幕上组和脑干组,均予持续4周每日30 min的干预。结果显示,iTBS可有效改善渗漏、误吸及残留现象,显著提升患者的吞咽功能[55]
动物实验方面,Huang等[56]在帕金森病吞咽障碍小鼠模型中发现,rTMS和左旋多巴(levodopa,L-Dopa)均可通过抑制NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor family pyrin domain containing 3,NLRP3)炎症小体激活及Caspase-1依赖的细胞焦亡通路,有效改善吞咽功能。笔者团队采用吞咽造影“金标准”方法,评价不同频率rTMS对脑卒中后吞咽障碍大鼠吞咽功能的影响,结果显示,10 Hz 高频rTMS不仅显著增加大鼠体质量(体重),在各项吞咽功能指标的改善上也优于5 Hz和20 Hz组,并能减轻肺炎,提高肺、血清及孤束核中P物质、降钙素基因相关肽和5-羟色胺的水平[57]。进一步研究提示,10 Hz rTMS对PSD大鼠吞咽功能的改善,可能与调节肠道微生物群及粪便代谢物的协同作用有关[58]

2.2 经颅直流电刺激

经颅直流电刺激(transcranial direct current stimulation,tDCS)是一种通过将阳极和阴极电极放置于头皮特定部位,持续给予微弱电流(通常为1~2 mA),以调节大脑皮层兴奋性的神经调控技术。tDCS可通过调节神经元动作电位发放频率,使靶区皮层兴奋性发生相应变化,阳极刺激可增强、阴极刺激可降低皮层兴奋性[59-60],从而改善与吞咽相关的神经功能。作为一种非侵入性神经调控手段,已有多项研究和系统评价证实,tDCS在卒中后吞咽障碍的治疗中具有一定疗效,但其治疗效果受刺激部位、刺激强度、卒中类型及病程等多种因素影响。
研究显示,tDCS能显著缩短口腔期和咽期食物运送时间,有效降低渗漏与误吸的发生率,且其治疗效果可持续1至3个月,进一步亚组分析结果显示,单侧刺激(无论健侧还是患侧半球)或双侧交替刺激的效果优于双侧同时刺激,后者与单独常规吞咽训练相比并未显示出优势[61]。然而,Li等[62]的研究证实,单侧及双侧大脑半球阳极tDCS联合常规吞咽训练均有助于改善卒中后吞咽障碍患者的吞咽功能,其中双侧阳极tDCS效果更为显著。在刺激方案的选择方面,20 min的1.4 mA阳极tDCS为目前最优刺激方案,此外,20 min的1.2 mA、1.5 mA、1.6 mA、2 mA及30 min的2 mA阳极刺激,同样优于常规治疗或假刺激,亚组分析进一步显示刺激初级感觉运动皮层的效果优于刺激缘上回,这可能与初级感觉运动皮层在吞咽运动调控中的核心作用相关[63]。目前,tDCS治疗仍存在刺激参数不统一、样本量偏小等局限,未来亟需开展大样本、长期随访、设计科学的随机对照研究以进一步优化刺激参数,并验证tDCS在神经源性吞咽障碍治疗中的长期安全性及疗效。

3 结语与展望

中枢神经系统的神经可塑性机制已成为当前神经科学领域的研究热点。借助神经调控技术,精准诱导并增强吞咽相关脑神经环路的可塑性,为吞咽障碍患者的神经功能康复提供了全新思路。本文系统阐述了目前吞咽障碍治疗中常用神经调控技术的临床应用进展、作用机制及其局限性。该领域仍面临诸多挑战,包括刺激参数标准化不足、针对帕金森病、肌萎缩侧索硬化和头颈部肿瘤等特定病因吞咽障碍的研究证据有限,以及在个体差异基础上优化治疗方案的难题。此外,尽管现有神经调控技术多样、机制各异,但针对不同临床分型、病程阶段及个体生理特征,如何选择最优干预方案仍有待深入探索。展望未来,需依托医工交叉融合,不断深化神经可塑性机制的相关研究,并推动多模态神经调控技术的协同整合,以更有效地激活感觉-运动神经环路网络。这不仅有望显著提升吞咽障碍患者的康复效率和生活质量,降低误吸及吸入性肺炎等并发症的发生风险,也将成为该领域未来的重要发展方向。
利益冲突声明:本研究未受到企业、公司等第三方资助,不存在潜在利益冲突。
[1]
SASEGBON A, CHENG I, HAMDY S. The neurorehabilitation of post-stroke dysphagia: physiology and pathophysiology[J]. J Physiol, 2025, 603(3): 617-634. DOI: 10.1113/JP285564.

[2]
SASEGBON A, CHENG I, LABEIT B, et al. New and evolving treatments for neurologic dysphagia[J]. Drugs, 2024, 84(8): 909-932. DOI: 10.1007/s40265-024-02064-x.

PMID

[3]
SASEGBON A, HAMDY S. The anatomy and physiology of normal and abnormal swallowing in oropharyngeal dysphagia[J]. Neurogastroenterol Motil, 2017, 29(11). DOI: 10.1111/nmo.13100.

[4]
SASEGBON A, HAMDY S. The role of the cerebellum in swallowing[J]. Dysphagia, 2023, 38(2): 497-509. DOI: 10.1007/s00455-021-10271-x.

[5]
GU H, REN D. Prevalence and risk factors of poststroke dysphagia: a meta-analysis[J]. Cerebrovasc Dis, 2025, 54(2): 236-259. DOI: 10.1159/000538218.

[6]
WEN X, FAN B, ZHAN J, et al. Integrated analysis of the prevalence and influencing factors of poststroke dysphagia[J]. Eur J Med Res, 2025, 30(1): 27. DOI: 10.1186/s40001-024-02263-y.

[7]
MIRMOSAYYEB O, EBRAHIMI N, SHEKARIAN A, et al. Prevalence of dysphagia in patients with multiple sclerosis: a systematic review and meta-analysis[J]. J Clin Neurosci, 2023, 108: 84-94. DOI: 10.1016/j.jocn.2023.01.006.

PMID

[8]
SUN W, WAN K, LI S, et al. Dysphagia in Parkinson’s disease: a bibliometric and visualization analysis from 2002 to 2022[J]. Heliyon, 2024, 10(9): e30191. DOI: 10.1016/j.heliyon.2024.e30191.

[9]
FLORIE M G M H, WIELAND M W M, PILZ W, et al. Prevalence and risk factors of oropharyngeal dysphagia in newly diagnosed head-and-neck cancer patients[J]. Cancers (Basel), 2024, 17(1): 9. DOI: 10.3390/cancers17010009.

[10]
GONG S, GAO Y, LIU J, et al. The prevalence and associated factors of dysphagia in Parkinson’s disease: a systematic review and meta-analysis[J]. Front Neurol, 2022, 13: 1000527. DOI: 10.3389/fneur.2022.1000527.

[11]
SPEYER R, CORDIER R, SUTT A L, et al. Behavioural interventions in people with oropharyngeal dysphagia: a systematic review and meta-analysis of randomised clinical trials[J]. J Clin Med, 2022, 11(3): 685. DOI: 10.3390/jcm11030685.

[12]
KIM J Y, KIM H. Effects of behavioural swallowing therapy in patients with Parkinson’s disease: a systematic review[J]. Int J Speech Lang Pathol, 2023, 25(2): 269-280. DOI: 10.1080/17549507.2022.2045356.

[13]
DZIEWAS R, MICHOU E, TRAPL-GRUNDSCHOBER M, et al. European Stroke Organisation and European Society for Swallowing Disorders guideline for the diagnosis and treatment of post-stroke dysphagia[J]. Eur Stroke J, 2021, 6(3): LXXXIX-LXXCXV. DOI: 10.1177/23969873211039721.

[14]
SASEGBON A, CHENG I, DAI M, et al. Device-based solutions supporting patients with swallowing problems[J]. Expert Rev Med Devices, 2025, 22(7): 699-709. DOI: 10.1080/17434440.2025.2508452.

[15]
RESTIVO D A, HAMDY S. Pharyngeal electrical stimulation device for the treatment of neurogenic dysphagia: technology update[J]. Med Devices (Auckl), 2018, 11: 21-26. DOI: 10.2147/MDER.S122287.

[16]
HAMDY S, ROTHWELL J C, AZIZ Q, et al. Long-term reorganization of human motor cortex driven by short-term sensory stimulation[J]. Nat Neurosci, 1998, 1(1): 64-68. DOI: 10.1038/264.

PMID

[17]
FRASER C, POWER M, HAMDY S, et al. Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury[J]. Neuron, 2002, 34(5): 831-840. DOI: 10.1016/s0896-6273(02)00705-5.

PMID

[18]
JAYASEKERAN V, SINGH S, TYRRELL P, et al. Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions[J]. Gastroenterology, 2010, 138(5): 1737-1746. DOI: 10.1053/j.gastro.2010.01.052.

PMID

[19]
MUHLE P, CLAUS I, LABEIT B, et al. Pharyngeal Electrical Stimulation prior to extubation: reduction of extubation failure rate in acute stroke patients[J]. J Crit Care, 2024, 82: 154808. DOI: 10.1016/j.jcrc.2024.154808.

[20]
SUNTRUP-KRUEGER S, LABEIT B, MARIAN T, et al. Pharyngeal electrical stimulation for postextubation dysphagia in acute stroke: a randomized controlled pilot trial[J]. Crit Care, 2023, 27(1): 383. DOI: 10.1186/s13054-023-04665-6.

[21]
DZIEWAS R, STELLATO R, VAN DER TWEEL I, et al. Pharyngeal electrical stimulation for early decannulation in tracheotomised patients with neurogenic dysphagia after stroke (PHAST-TRAC): a prospective, single-blinded, randomised trial[J]. Lancet Neurol, 2018, 17(10): 849-859. DOI: 10.1016/S1474-4422(18)30255-2.

PMID

[22]
CHENG I, BATH P M, HAMDY S, et al. Predictors of pharyngeal electrical stimulation treatment success in tracheotomised stroke patients with dysphagia: secondary analysis from PHADER cohort study[J]. Neurotherapeutics, 2024, 21(5): e00433. DOI: 10.1016/j.neurot.2024.e00433.

[23]
TRAUGOTT M, HOEPLER W, KITZBERGER R, et al. Successful treatment of intubation-induced severe neurogenic post-extubation dysphagia using pharyngeal electrical stimulation in a COVID-19 survivor: a case report[J]. J Med Case Rep, 2021, 15(1): 148. DOI: 10.1186/s13256-021-02763-z.

[24]
DAWSON J, ABDUL-RAHIM A H, KIMBERLEY T J. Neurostimulation for treatment of post-stroke impairments[J]. Nat Rev Neurol, 2024, 20(5): 259-268. DOI: 10.1038/s41582-024-00953-z.

PMID

[25]
BATH P M, SCUTT P, LOVE J, et al. Pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke: a randomized controlled trial[J]. Stroke, 2016, 47(6): 1562-1570. DOI: 10.1161/STROKEAHA.115.012455.

PMID

[26]
ZHANG X, WANG X, DOU Z, et al. A novel approach to severe chronic neurogenic dysphagia using pharyngeal sensory electrical stimulation[J]. Am J Phys Med Rehabil, 2023, 102(3): e32-e35. DOI: 10.1097/PHM.0000000000002116.

[27]
ZHANG X, LIANG Y, WANG X, et al. Effect of modified pharyngeal electrical stimulation on patients with severe chronic neurogenic dysphagia: a single-arm prospective study[J]. Dysphagia, 2023, 38(4): 1128-1137. DOI: 10.1007/s00455-022-10536-z.

[28]
ZHANG X, WANG X, LIANG Y, et al. Neuroplasticity elicited by modified pharyngeal electrical stimulation: a pilot study[J]. Brain Sci, 2023, 13(1): 119. DOI: 10.3390/brainsci13010119.

[29]
HU J, WANG Q, DAI Y, et al. Screening for optimal parameters for modified pharyngeal electrical stimulation for the treatment of dysphagia after stroke in rats[J]. Exp Neurol, 2024, 379: 114878. DOI: 10.1016/j.expneurol.2024.114878.

[30]
WANG Q, HU J, TIAN Y, et al. An experimental study on the optimal timing of modified pharyngeal electrical stimulation for the treatment of dysphagia after stroke in rats[J]. Brain Res Bull, 2025, 227: 111390. DOI: 10.1016/j.brainresbull.2025.111390.

[31]
ANDALIB S, DIVANI A A, AYATA C, et al. Vagus nerve stimulation in ischemic stroke[J]. Curr Neurol Neurosci Rep, 2023, 23(12): 947-962. DOI: 10.1007/s11910-023-01323-w.

[32]
WANG Y, HE Y, JIANG L, et al. Effect of transcutaneous auricular vagus nerve stimulation on post-stroke dysphagia[J]. J Neurol, 2023, 270(2): 995-1003. DOI: 10.1007/s00415-022-11465-5.

[33]
MARROSU F, MALECI A, COCCO E, et al. Vagal nerve stimulation improves cerebellar tremor and dysphagia in multiple sclerosis[J]. Mult Scler, 2007, 13(9): 1200-1202. DOI: 10.1177/1352458507078399.

[34]
LONG L, ZANG Q, JIA G, et al. Transcutaneous auricular vagus nerve stimulation promotes white matter repair and improves dysphagia symptoms in cerebral ischemia model rats[J]. Front Behav Neurosci, 2022, 16: 811419. DOI: 10.3389/fnbeh.2022.811419.

[35]
KHODAPARAST N, HAYS S A, SLOAN A M, et al. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke[J]. Neurorehabil Neural Repair, 2014, 28(7): 698-706. DOI: 10.1177/1545968314521006.

PMID

[36]
DU L, HE X, XIONG X, et al. Vagus nerve stimulation in cerebral stroke: biological mechanisms, therapeutic modalities, clinical applications, and future directions[J]. Neural Regen Res, 2024, 19(8): 1707-1717. DOI: 10.4103/1673-5374.389365.

PMID

[37]
KANEOKA A, PISEGNA J M, INOKUCHI H, et al. Relationship between laryngeal sensory deficits, aspiration, and pneumonia in patients with dysphagia[J]. Dysphagia, 2018, 33(2): 192-199. DOI: 10.1007/s00455-017-9845-8.

PMID

[38]
ALTIDOR L K, BRUNER M M, DESLAURIERS J F, et al. Acute vagus nerve stimulation enhances reversal learning in rats[J]. Neurobiol Learn Mem, 2021, 184: 107498. DOI: 10.1016/j.nlm.2021.107498.

[39]
CHENG K, WANG Z, BAI J, et al. Research advances in the application of vagus nerve electrical stimulation in ischemic stroke[J]. Front Neurosci, 2022, 16: 1043446. DOI: 10.3389/fnins.2022.1043446.

[40]
AY I, NAPADOW V, AY H. Electrical stimulation of the vagus nerve dermatome in the external ear is protective in rat cerebral ischemia[J]. Brain Stimul, 2015, 8(1): 7-12. DOI: 10.1016/j.brs.2014.09.009.

PMID

[41]
LIU M, LIU M, ZHANG B, et al. Research hotspots and frontiers of vagus nerve stimulation in stroke: a bibliometric analysis[J]. Front Neurosci, 2024, 18: 1510658. DOI: 10.3389/fnins.2024.1510658.

[42]
HAN Z, ZHANG C, CHENG K, et al. Clinical application of respiratory-gated auricular vagal afferent nerve stimulation[J]. Neuroscience, 2025, 565: 117-123. DOI: 10.1016/j.neuroscience.2024.11.065.

PMID

[43]
ZHENG Y, MAO Y R, YUAN T F, et al. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation[J]. Neural Regen Res, 2020, 15(8): 1437-1450. DOI: 10.4103/1673-5374.274332.

PMID

[44]
XIA Y, WANG M, ZHU Y. The effect of cerebellar rTMS on modulating motor dysfunction in neurological disorders: a systematic review[J]. Cerebellum, 2023, 22(5): 954-972. DOI: 10.1007/s12311-022-01465-6.

[45]
GEORGIOU A M, PHYLACTOU P, KAMBANAROS M. The effectiveness of transcranial magnetic stimulation for dysphagia in stroke patients: an umbrella review of systematic reviews and meta-analyses[J]. Front Hum Neurosci, 2024, 18: 1355407. DOI: 10.3389/fnhum.2024.1355407.

[46]
QIAO J, YE Q P, WU Z M, et al. The effect and optimal parameters of repetitive transcranial magnetic stimulation on poststroke dysphagia: a meta-analysis of randomized controlled trials[J]. Front Neurosci, 2022, 16: 845737. DOI: 10.3389/fnins.2022.845737.

[47]
WEN X, LIU Z, ZHONG L, et al. The effectiveness of repetitive transcranial magnetic stimulation for post-stroke dysphagia: a systematic review and meta-analysis[J]. Front Hum Neurosci, 2022, 16: 841781. DOI: 10.3389/fnhum.2022.841781.

[48]
CHENG I, SASEGBON A, HAMDY S. Effects of neurostimulation on poststroke dysphagia: a synthesis of current evidence from randomized controlled trials[J]. Neuromodulation, 2021, 24(8): 1388-1401. DOI: 10.1111/ner.13327.

[49]
XIE Y L, WANG S, JIA J M, et al. Transcranial magnetic stimulation for improving dysphagia after stroke: a meta-analysis of randomized controlled trials[J]. Front Neurosci, 2022, 16: 854219. DOI: 10.3389/fnins.2022.854219.

[50]
LIAO X, XING G, GUO Z, et al. Repetitive transcranial magnetic stimulation as an alternative therapy for dysphagia after stroke: a systematic review and meta-analysis[J]. Clin Rehabil, 2017, 31(3): 289-298. DOI: 10.1177/0269215516644771.

PMID

[51]
YANG W, CAO X, ZHANG X, et al. The effect of repetitive transcranial magnetic stimulation on dysphagia after stroke: a systematic review and meta-analysis[J]. Front Neurosci, 2021, 15: 769848. DOI: 10.3389/fnins.2021.769848.

[52]
LIU Y, YIN S, YANG X, et al. Effects of cerebellar repetitive transcranial magnetic stimulation in the treatment of post-stroke dysphagia: a meta-analysis and systematic review of randomized controlled trials[J]. Eur Neurol, 2024, 87(2): 67-78. DOI: 10.1159/000538130.

PMID

[53]
SASEGBON A, SMITH C J, BATH P, et al. The effects of unilateral and bilateral cerebellar rTMS on human pharyngeal motor cortical activity and swallowing behavior[J]. Exp Brain Res, 2020, 238(7/8): 1719-1733. DOI: 10.1007/s00221-020-05787-x.

[54]
RAO J, LI F, ZHONG L, et al. Bilateral cerebellar intermittent theta burst stimulation combined with swallowing speech therapy for dysphagia after stroke: a randomized, double-blind, sham-controlled, clinical trial[J]. Neurorehabil Neural Repair, 2022, 36(7): 437-448. DOI: 10.1177/15459683221092995.

[55]
TAI J, HU R, FAN S, et al. Theta-burst transcranial magnetic stimulation for dysphagia patients during recovery stage of stroke: a randomized controlled trial[J]. Eur J Phys Rehabil Med, 2023, 59(5): 543-553. DOI: 10.23736/S1973-9087.23.08023-1.

[56]
HUANG P, ZHU Z, LI W, et al. rTMS improves dysphagia by inhibiting NLRP3 inflammasome activation and caspase-1 dependent pyroptosis in PD mice[J]. NPJ Parkinsons Dis, 2024, 10(1): 156. DOI: 10.1038/s41531-024-00775-2.

[57]
CHEN J, ZHAO F, HONG J, et al. Effect of high-frequency repetitive transcranial magnetic stimulation on swallowing function and pneumonia in poststroke dysphagia in rats[J]. Brain Res, 2024, 1832: 148846. DOI: 10.1016/j.brainres.2024.148846.

[58]
ZHAO F, CHEN J, SHAN Y, et al. Comprehensive assessment of HF-rTMS treatment mechanism for post-stroke dysphagia in rats by integration of fecal metabolomics and 16S rRNA sequencing[J]. Front Cell Infect Microbiol, 2024, 14: 1373737. DOI: 10.3389/fcimb.2024.1373737.

[59]
CHEN L, DU B, LI K, et al. The effect of tDCS on inhibitory control and its transfer effect on sustained attention in children with autism spectrum disorder: an fNIRS study[J]. Brain Stimul, 2024, 17(3): 594-606. DOI: 10.1016/j.brs.2024.04.019.

PMID

[60]
BIKSON M, GROSSMAN P, THOMAS C, et al. Safety of transcranial direct current stimulation: evidence based update 2016[J]. Brain Stimul, 2016, 9(5): 641-661. DOI: 10.1016/j.brs.2016.06.004.

PMID

[61]
GÓMEZ-GARCÍA N, ÁLVAREZ-BARRIO L, LEIRÓS-RODRÍGUEZ R, et al. Transcranial direct current stimulation for post-stroke dysphagia: a meta-analysis[J]. J Neuroeng Rehabil, 2023, 20(1): 165. DOI: 10.1186/s12984-023-01290-w.

[62]
LI Y, FENG H, LI J, et al. The effect of transcranial direct current stimulation of pharyngeal motor cortex on swallowing function in patients with chronic dysphagia after stroke: a retrospective cohort study[J]. Medicine (Baltimore), 2020, 99(10): e19121. DOI: 10.1097/MD.0000000000019121.

[63]
XIE J, ZHOU C, NGARUWENAYO G, et al. Dosage consideration for transcranial direct current stimulation in post-stroke dysphagia: a systematic review and network meta-analysis[J]. Front Neurol, 2023, 14: 1098831. DOI: 10.3389/fneur.2023.1098831.

Outlines

/