从数据治理到智能应用:医学“干实验室”建设的实践与思考

From data governance to intelligent applications: practice and reflection on building the medical “dry laboratory ”

  • 摘要: 本研究旨在探索并构建以医疗数据为核心实验对象、以计算科学与人工智能为主要研究手段的医学“干实验室”建设模式,为医疗机构开展数据驱动型研究提供系统性参考。研究以某大型综合性三甲医院为实践案例,系统阐述了其建设框架,构建了涵盖“数据源头培育、持续治理、价值释放至生态反哺”的全周期闭环模式, 推动医疗数据从“静态资源”向“活体资产”的理念转变,并创新性地将“干实验室”纳入住院医师规范化培训轮转体系,探索医学数据思维的系统性普及路径。实践表明,该框架明确了医学“干实验室”作为数字化研究实体的功能定位,通过深度融合临床实践与数据洞察,形成了以临床需求为起点并能有效反哺临床的闭环科研体系;数据治理体系的实施显著提升了多模态医疗数据的科研可用性,“干实验室”嵌入规培体系则实现了临床医生数据素养的规模化培养。结论认为,医学“干实验室”是区别于传统“湿实验室”的新型数字化医学科研平台,其建设实践为国内医疗机构提供了参考框架,开创了“养细胞、养老鼠、养数据”三位一体的“干湿结合”科研新模式, 对提升医学科研原始创新能力、培养复合型医学人才及推动智慧医疗模式演进具有重要示范意义。

     

    Abstract: This study aims to develop a medical “dry laboratory” model that treats healthcare data as the primary research subject and employs computational science and AI as core methodologies. Based on the practice of a large tertiary hospital,we present a construction framework featuring a full-cycle model spanning data cultivation, governance, value extraction, and ecological feedback—transforming medical data from a static resource into a living asset. Innovatively, the “dry laboratory” was integrated into the residency training rotation to systematically cultivate data literacy. Practice has shown that the framework establishes the “dry laboratory” as a digital research entity, creating a closed-loop system that integrates clinical practice with data analytics, significantly enhancing the usability of multimodal data and enabling scalable training in data competence. In conclusion, the medical “dry laboratory” represents a new digital research paradigm distinct from traditional wet laboratories. Its implementation provides a reference framework and introduces an integrated “dry-wet” research model combining wet-lab experiments with data cultivation, demonstrating significant value for enhancing medical innovation, cultivating interdisciplinary talent, and advancing smart healthcare.

     

/

返回文章
返回